Address

Constantiaplatz 4, 26723 Emden

Contact Information

Email: yusra.tehreem@hs-emden-leer.de

Yusra Tehreem

Research Associate

Hochschule Emden/Leer

Yusra Tehreem is a Marie Sklodowska-Curie researcher for ETN-CHARMING project. Her objective is to explore the potential of Virtual Reality for the advanced training of employees in the field of chemical industry. 

Publications

  • S. Garcia Fracaro, P. Chan, T. Gallagher, Y. Tehreem, R. Toyoda, B. Kristel, G. Jarka, T. Pfeiffer, B. Slof, S. Wachsmuth, and M. Wilk, “Towards design guidelines for virtual reality training for the chemical industry,” Education for chemical engineers, 2021. doi:https://doi.org/10.1016/j.ece.2021.01.014
    [BibTeX] [Abstract] [Download PDF]

    Operator training in the chemical industry is important because of the potentially hazardous nature of procedures and the way operators’ mistakes can have serious consequences on process operation and safety. Currently, operator training is facing some challenges, such as high costs, safety limitations and time constraints. Also, there have been some indications of a lack of engagement of employees during mandatory training. Immersive technologies can provide solutions to these challenges. Specifically, virtual reality (VR) has the potential to improve the way chemical operators experience training sessions, increasing motivation, virtually exposing operators to unsafe situations, and reducing classroom training time. In this paper, we present research being conducted to develop a virtual reality training solution as part of the EU Horizon 2020 CHARMING Project, a project focusing on the education of current and future chemical industry stakeholders. This paper includes the design principles for a virtual reality training environment including the features that enhance the effectiveness of virtual reality training such as game-based learning elements, learning analytics, and assessment methods. This work can assist those interested in exploring the potential of virtual reality training environments in the chemical industry from a multidisciplinary perspective.

    @article{GARCIAFRACARO2021,
    title = {Towards Design Guidelines for Virtual Reality Training for the Chemical Industry},
    journal = {Education for Chemical Engineers},
    year = {2021},
    issn = {1749-7728},
    doi = {https://doi.org/10.1016/j.ece.2021.01.014},
    url = {https://www.sciencedirect.com/science/article/pii/S1749772821000142},
    author = {Sofia {Garcia Fracaro} and Philippe Chan and Timothy Gallagher and Yusra Tehreem and Ryo Toyoda and Bernaerts Kristel and Glassey Jarka and Thies Pfeiffer and Bert Slof and Sven Wachsmuth and Michael Wilk},
    keywords = {Virtual Reality, Chemical industry, Operator training, Learning analytics, Gamebased learning, assessment},
    abstract = {Operator training in the chemical industry is important because of the potentially hazardous nature of procedures and the way operators' mistakes can have serious consequences on process operation and safety. Currently, operator training is facing some challenges, such as high costs, safety limitations and time constraints. Also, there have been some indications of a lack of engagement of employees during mandatory training. Immersive technologies can provide solutions to these challenges. Specifically, virtual reality (VR) has the potential to improve the way chemical operators experience training sessions, increasing motivation, virtually exposing operators to unsafe situations, and reducing classroom training time. In this paper, we present research being conducted to develop a virtual reality training solution as part of the EU Horizon 2020 CHARMING Project, a project focusing on the education of current and future chemical industry stakeholders. This paper includes the design principles for a virtual reality training environment including the features that enhance the effectiveness of virtual reality training such as game-based learning elements, learning analytics, and assessment methods. This work can assist those interested in exploring the potential of virtual reality training environments in the chemical industry from a multidisciplinary perspective.}
    }

  • Y. Tehreem and T. Pfeiffer, “Immersive virtual reality training for the operation of chemical reactors,” in Delfi 2020 – die 18. fachtagung bildungstechnologien der gesellschaft für informatik e.v., Bonn, 2020, pp. 359-360.
    [BibTeX] [Abstract] [Download PDF]

    This paper discusses virtual reality (VR) training for chemical operators on hazardous or costly operations of chemical plants. To this end, a prototypical training scenario is developed which will be deployed to industrial partners and evaluated regarding efficiency and effectiveness. In this paper, the current version of the prototype is presented, that allows life-sized trainings in a virtual simulation of a chemical reactor. Building up on this prototype scenario, means for measuring performance, providing feedback, and guiding users through VR-based trainings are explored and evaluated, targeting at an optimized transfer of knowledge from virtual to real world. This work is embedded in the Marie-Skłodowska-Curie Innovative Training Network CHARMING3, in which 15 PhD candidates from six European countries are cooperating.

    @inproceedings{tehreem2020immersive,
    author = {Tehreem, Yusra AND Pfeiffer, Thies},
    title = {Immersive Virtual Reality Training for the Operation of Chemical Reactors},
    booktitle = {DELFI 2020 – Die 18. Fachtagung Bildungstechnologien der Gesellschaft für Informatik e.V.},
    year = {2020},
    editor = {Zender, Raphael AND Ifenthaler, Dirk AND Leonhardt, Thiemo AND Schumacher, Clara} ,
    pages = { 359-360 },
    publisher = {Gesellschaft für Informatik e.V.},
    address = {Bonn},
    url = {https://dl.gi.de/bitstream/handle/20.500.12116/34186/359%20DELFI2020_paper_81.pdf?sequence=1&isAllowed=y},
    abstract = {This paper discusses virtual reality (VR) training for chemical operators on hazardous or costly operations of chemical plants. To this end, a prototypical training scenario is developed which will be deployed to industrial partners and evaluated regarding efficiency and effectiveness. In this paper, the current version of the prototype is presented, that allows life-sized trainings in a virtual simulation of a chemical reactor. Building up on this prototype scenario, means for measuring performance, providing feedback, and guiding users through VR-based trainings are explored and evaluated, targeting at an optimized transfer of knowledge from virtual to real world. This work is embedded in the Marie-Skłodowska-Curie Innovative Training Network CHARMING3, in which 15 PhD candidates from six European countries are cooperating.}
    }

Education

  1. 2016

    Masters of Computer Science

    University of Evora, Portugal
  2. 2014

    Bachelors of Software Engineering

    Fatima Jinnah Women University, Pakistan

Experience

  1. 2017-2019
    Software Quality Assurance Engineer
    Infiniun Healthcare Pvt Limited, Pakistan
  2. 2016-2017
    V&V Automated Test Analyst (Traineeship)
    Pathology Solutions, Philips, United Kingdom

Awards

  • 2018
    Marie Sklodowska-Curie PhD Fellowship (Germany)
    ETN-CHARMING (European Union)
  • 2016
    Erasmus Traineeship Grant (United Kingdom)
    Erasmus Mundus (European Union)
  • 2013
    EMMA-West Masters Scholarship (Portugal)
    Erasmus Mundus (European Union)