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Abstract 

Due to advances in extended reality technology, an increasing number of head-mounted displays are 

equipped with eye trackers. These sensors allow to predict customers’ preferences on-the-fly. Such 

information can serve as features for recommender systems. We propose to treat eye tracking data as 

time series and utilize a deep time series classifier for inference. Our evaluation investigates possibly 

early predictions about customer preferences for healthy products in a virtual reality environment. The 

results, that are based on data from a large-scale laboratory experiment, demonstrate superior 

performance of the time series classifier, compared to a shallow gradient boosting baseline. They 

indicate a trade-off between prediction quality and how early this prediction is made. Overall, our study 

suggests that eye tracking and time series classification are valuable avenues for research and practice. 

Adaptive (shopping) assistants and recommendations based on artificial intelligence and bio sensors 

seem to be in close vicinity. 

 

Keywords: Extended Reality, Eye Tracking, Healthy Consumption, Time Series Classification, Virtual 

Commerce 

1 Introduction 

Healthy food choices are a highly relevant topic for making predictions and recommendations in retail 

context (Cho et al. 2014; Naruetharadhol et al. 2023), as food choices are an important determinant of 

physical health and well-being (Wahl et al. 2017; Block et al. 2011; Bublitz et al. 2013). After the 

disruptive retail transformation from physical warehouses to e-commerce, a slower but continuous 

development towards virtual commerce is taking place (Evans and Wurster 1999; Bourlakis et al. 2009; 

Gadalla et al. 2013; Kovacova et al. 2022). Extended Reality (XR), an umbrella term for Augmented 

Reality (AR) and Virtual Reality (VR), found its way into Western society. Through interaction and 

high realism, this new technology offers unprecedented opportunities that may encourage consumers to 

make healthier choices. Research on the topic is needed that investigates new challenges and 

opportunities. Thus, we think that retailers should seize the opportunity and adjust their user assistance 

capabilities in order to meet the eminent needs of consumers who visit their future (at least partly virtual) 

commerce environments (Regt and Barnes 2019). Examples are adaptive head-up displays (HUDs that 

display customized product information and comparison options), personalized side-by-side 

recommendations, contextual advertising, and cross-platform nudges based on individual characteristics 

and preferences (Mariotti et al. 2023).  

While acknowledging that research should advocate for rigid privacy measures within any XR 

environment, technological developments will most likely lead consumers to wear XR headsets, 

equipped with various bio sensors, for prolonged periods. Today, the first consumer-grade XR devices 

offer bio sensor based features, such as foveated rendering (Patney et al. 2016) and gaze-based 

interactions (Piumsomboon et al., 2017). One reason for our anticipated proliferation of biosensors is 

the privacy-personalization paradox, which describes the fact that people readily give personal 
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information away, if they expect utility while misjudging the real value of their personal information 

(Hoang et al. 2023). 

Especially eye tracking (ET) based applications are a unique selling point in the current XR adoption 

phase. Eventually, ET could become a quality-of-life feature which consumers take for granted, like the 

camera in smartphones. ET can help to achieve a high degree of personalization and serve as an 

additional source of information for recommender systems (Meißner et al. 2019). In XR 

recommendation scenarios, ET may eventually replace click streams and historical data to a large extent. 

This is because ET allows close investigation of the user’s decision process and at the same time is 

available in the early phase of a purchase situation (Pfeiffer et al. 2020; Meißner et al. 2019). 

Regarding the consumer preference (the dependent variable), we focus on healthy consumption because 

in different societies around the world, an increased attention on a healthy lifestyle is noticeable 

(Parashar et al. 2023). Policy makers are introducing healthiness indicators like the Nutri-score label 

and are actively fostering a healthy consumption (Hercberg et al. 2021), which is even included in the 

United Nations Sustainable Development Goals (Fernandez 2019). Therefore, a valuable customer 

insight is whether a person is open to suggestions that support healthy product choices or not (Tran et 

al. 2018). In the light of these developments, we pose following research question: 

Can we identify customers who buy healthy products possibly early during their decision process 

in a virtual commerce scenario? 

Shallow machine learning approaches have already been successfully applied in previous studies that 

predicted other aspects of the customer journey, for example the customers’ search motives (Pfeiffer et 

al. 2020) or the duration of intermediate decision stages (Weiß et al. 2023). A logic next step is to 

leverage deep learning to make predictions. An increasing amount of data and architectural 

improvements are likely to allow training of highly generalizing (or very precise, specialized) models. 

We treat the ET data as a discrete time series and, as further contrast to previously mentioned works, 

compare InceptionTime, one of the most promising deep learning approaches for time series 

classification, with the shallow gradient boosting method XGBoost which uses cross-sectional features. 

With this paper, we contribute to the information systems literature in theoretical and practical manner. 

(i) As theoretical contribution, we show the superiority of using the complete time series of ET data in 

contrast to treating the ET data as cross-sectional data (by aggregating the number of fixations and other 

attributes). (ii) On the practical side, we show a promising way to personalize assistance systems in 

future metaverse applications based on the inobtrusive collection of ET data. Our paper describes a 

machine learning approach based on ET data which can be used to personalize XR experiences. The 

resulting features are of particular interest for new products or, more generally, in cases where user data 

is absent. (iii) Moreover, we investigate the trade-off between prediction quality and timing. Overall, 

our results inform the reader about interesting time windows during the decision process in our 

experimental purchase situation. From a broader research perspective, we show a promising way to 

personalize assistance systems in future metaverse applications. 

2 Related Work 

Already several Second Life studies pioneered connected 3D environments in virtual retail platforms 

(Bourlakis et al. 2009; Gadalla et al. 2013; Papagiannidis and Bourlakis 2010). The authors have 

depicted a transformation of traditional retail and outlined evolving marketing opportunities in the 

virtual space. Their conclusions emphasize the need for highly personalized and precisely timed 

customer service. Today, such connected virtual environments are thought of as the Metaverse, which 

are accessible via various XR devices. Recent comprehensive literature reviews about Metaverse 

shopping (Kliestik et al. 2022; Alcañiz et al. 2019; Shen et al. 2021) and AR shopping (Popescu et al. 

2022) show how earlier claims, that were made for desktop environments, remain valid in XR. Virtual 

commerce research has diversified while recommendations and personalization remain highly relevant. 

A further recent review by Xi and Hamari (2021) categorizes 83 XR shopping studies along different 

axes (theories, in- and output devices, tracking technology, products, cognitive reactions, behavioral 
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outcomes) and suggests a number of avenues for future research. Among these suggestions is an 

effective and efficient design of XR shopping, which is the area this work contributes to. The Metaverse 

is steadily taking shape (Peukert et al. 2022; Sriram 2022), head-mounted displays (HMDs) technology 

is advancing (Spagnolo et al. 2023), and HMD prices are deteriorating (Jensen and Konradsen 2018). 

Various experiments have shown the significant impact of recommendations on the shopping behavior 

of customers, such as Li et al. (2022). Particularly in advertisement driven environments, recommender 

systems are very important business components. For instance, Google1 accounts 40% of the Play Store 

app installations and 60% of the YouTube watch time to recommendations made by their recommender 

system. Collecting implicit information which reflects user preferences, like ET data, is an unobtrusive 

approach. This is important, as finding similarities between individuals should happen without any 

disruption of the consumer. Working with ET data in the context of recommender systems is nothing 

new (Castagnos et al. 2010; Xu et al. 2008; Zhao et al. 2016), but previous studies focused on desktop 

based e-commerce websites. Moreover, these studies do not aim for an early prediction of user 

preferences. 

Generally speaking, gaze patterns have potential to improve various aspects of digital and virtual 

commerce. Takahashi et al. (2022) presented a work in which they utilized ET to optimize a desktop-

based 3D store layout. With the goal to support customers’ decision-making processes, the experiment 

software used gaze information to rearrange the displayed products. Another step towards gaze-pattern 

utilization in shopping context was made by David-John et al. (2021). Their experimental design 

consisted of selection tasks of food items listed on recipes in a VR scene. The authors predicted the 

participants’ intent to interact using logistic regression on gaze patterns. They treated the data as time 

series but only for a relatively short prediction horizon of 0.17 to 1 second. The results suggest that the 

used model can predict the users’ interaction timing in real-time with above-chance accuracy. 

Further ET studies have examined healthy food choices (Fenko et al. 2018; Kim et al. 2018) but the 

prediction horizon of these studies covered the whole decision-making process until the very end. 

Typical research using ET in the field of consumer behavior focuses on understanding and modelling 

the entire decision process up to the final purchase. For example, ET research has found the gaze cascade 

effect which describes a pre-decisional focus of attention on the chosen product (Shimojo et al. 2003; 

Krajbich and Rangel 2011). Regarding our research gap, none of these studies predicted customers’ 

preferences early in the decision process. 

In a hybrid field study, Pfeiffer et al. (2020) investigated grocery shopping behavior, especially the 

differences between a real and virtual supermarket. The authors did not predict consumers’ preferences 

but two different shopping patterns, namely goal directed and exploratory search behavior. To predict 

shopping patterns, they analyzed the collected ET data of 29 participants in VR (a room-sized CAVE 

environment) and 20 in a real supermarket. Their evaluation covered increasing time windows on a per 

second basis. These windows were calculated using the intervals from the start of each trial to [5; 100] 
seconds into the decision-making process, increasing by one second. Due to the experimental setup, the 

classes were balanced, which is different compared to data presented in our study. They used shallow 

machine-learning approaches for point-in-time related features and not for time series. We call these 

features cross-sectional, as they are single values which are aggregated over the whole predefined 

period. This work identified the total number of fixated products and the variance of the average fixation 

duration among the most important predictor variables. 

Millecamp et al. (2021) reported gaze pattern classification results for personality traits in the context 

of a browser-based music recommender system. The authors conducted a study with 30 participants in 

which eye movements were recorded using a desktop-based tracker. Their goal was to acquire 

predictions about the participants’ openness, need for cognition, and musical sophistication. The authors 

considered 30%, 60%, and 90% of the data as time windows for their predictions. These time windows 

were less than the whole task duration but 60% and 90% of the decision-making process cannot be 

considered as particularly early stages. In general, their work showed the potential of using ET for 

 

1 https://developers.google.com/machine-learning/recommendation/overview 
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adaptation of recommendations and explanations. However, in the conclusion they outlined 

improvement potential for the model’s performance and called for further research on different tasks 

and interfaces. 

Our search for related work indicates a research gap that previous authors did not particularly focus on 

early prediction of consumer preferences based on gaze patterns. So far, no proposal has been made to 

leverage ET data to generate features for recommender systems in VR which are generated possibly 

early in customer decision-making processes. Furthermore, to the best of our knowledge, no previous 

study used ET data with a state-of-the-art time series classification model to predict customer choices 

for healthy products. Using time series can improve performance because of leveraging information 

retrieved from behavior over time. 

3 Method 

Experimental Design 

As dependent variable, we are interested in the healthiness of different muesli (cereal) purchase 

decisions. To categorize all products as healthy or unhealthy, the package label serves as a discriminative 

criterion. Representatives of the healthy and unhealthy classes are illustrated in Figure 1 (slightly 

distorted due to copyright reasons), where the left package is the healthy and the right package is the 

unhealthy alternative. The highlighted healthy label reads “without added sugar, wholegrain”. We 

categorized a product as healthy if the packaging indicated at least reduced (or no) sugar or fat. 

According to this definition, seven out of the total 40 available products in the experiment were marked 

as healthy products. In total, out of 1040 product choices, 158 (15.2%) were for healthy products. The 

imbalanced class ratio leads to methodological challenges, which we discuss in the section on the 

treatment of class imbalances. 

                             

Figure 1. Criterion for healthy (left) and unhealthy (right) is the packaging label. 

Our observations of retail purchase decisions in VR were collected in a controlled environment in a 

European University laboratory. The experimental design allowed our research group to answer several 

questions. Thus, the data is used in further studies which investigate the impact of low versus high 

immersion on system adoption (Peukert et al. 2019) and the impact of virtual reality in a conjoint-based 

choice analysis (Meißner et al. 2020). The VR scene was created using Unity 5.5.3f1 game engine. 

Participants were situated in a plain virtual room with a shelf of product packages and a shopping cart, 

as shown in Figure 2. We used an HTC Vive HMD with a dual display with 2160×1200 pixels resolution, 

an integrated SMI eye tracker, and HTC hand-held controllers.  
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Figure 2. Virtual environment with a muesli package shelf and a shopping cart.  

After signing an informed consent form, all participants made multiple product choices in front of a 

product shelf. Participation compensation amounted to 14 Euro in total. To provide an economic 

incentive, participants received one of their product choices at random as part of their compensation. 

We instructed the participants to choose according to their natural preference and subtracted the cost of 

the chosen product from the monetary payout. Each experimental session was preceded by a training 

phase to familiarize the participants with the virtual environment. For this training, the shelf was filled 

with baking mixtures. In the subsequent experimental trials, the virtual shelf contained muesli products. 

In total, it held 24 different options which were selected from a product pool of 40 mueslis. Their 

arrangement followed a design which was suited for a conjoint-based choice analysis (Chrzan and Orme 

2000). At any time, the product positioning ruled out centrality effects (Atalay et al. 2012). Furthermore, 

we positioned mueslis of the same brand close to each other. For each trial, one out of 171 product 

arrangements were displayed on the shelf. On average, the shelf contained 4.27 (SD 1.09) healthy 

products.  

 

 

 

 

 

 

 

 

 

Figure 3. The experimental setup. We exclude the training task and the real-world decisions. 

Our sample consists of 132 student recordings, of which 45 were females and 87 males, with an average 

age of 22.13 (SD 1.98). The experiment followed a between-subjects design in which one treatment 

group was asked to make their last two purchase decisions in front of a real shelf (with real products). 

We had to exclude these real-world tasks because the ET equipment differed substantially between the 

VR and real-world setup. Thus, each participant made a total of either eight or ten product choices in 

VR, depending on the treatment group (see Figure 3). In other words, for the present study, we only 

used purchase decisions that were made in VR. After excluding the training task and erroneous 

recordings, the VR trials yield 1040 product choices, with an average decision duration of 54.91 seconds 

(SD 33.49). However, we further reduced the number of evaluated trials in the preprocessing because 

many of the respective decision-making processes were too short (less than 45 seconds) to separate them 

Group VR 2 (69 participants) Group VR 1 (63 participants) 

Training task 

7 VR choice tasks (conjoint-based choice product layout) in VR 

1 choice task (fixed layout) in VR  

2 fixed choice tasks in VR 2 fixed choice tasks in reality 
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meaningfully into sub-phases (like orientation and evaluation). We chose 45 seconds as cutoff duration 

because of logic considerations about a decision process: a participant would need approximately 15 

seconds to get an overview over the assortment and another 30 seconds to decide between the items in 

their consideration set (Hauser 2014). 

Preprocessing 

First, we determined fixations from the raw ET data and calculated the subject’s gaze target for each 

fixation, which we tracked by means of ray casting (Pietroszek 2019). We did not consider blinks, pupil 

dilation and saccades. However, we emphasize that additional features could further improve predictive 

performance. In this paper we deliberately chose to focus on visual attention, which is best described by 

fixations (Holmqvist et al. 2011). In general, fixations last between 0.2 and 0.4 seconds. Fixations of 

less than 0.1 seconds were excluded, as they are too short for conscious information processing 

(Duchowski 2017). Fixations lasting longer than 10 seconds were also excluded, as they most likely 

indicate unnatural behavior or faulty sensor information. Predefined areas of interest comprised different 

parts of the individual product packages and their related price tags. This enabled us to discriminate 

fixations on different product groups (healthy and unhealthy products). Furthermore, fixations on each 

individual product and individual product’s nutrition table were treated separately.  

Transforming the gaze data into a discrete multivariate time series is the next preprocessing step. To 

aggregate the fixations into discrete bins, it was necessary to choose different step sizes for the cut-off 

points of the bins. We evaluated the step values (0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 9) seconds for the 

time series generation process. These values are based on reasoning about the average and maximum 

duration of a single fixation as described above. Shorter steps would often contain no fixation at all, and 

longer periods would cover too many fixations and be too coarse. We applied a sliding window 

technique (Hota et al. 2017) such that all bins overlapped with the previous one by 50%. The purpose 

of applying a sliding window is to capture interesting patterns that might be hidden by disjoint intervals. 

For each step size, we calculated the number of fixations, mean, variance, and skewness of the fixation 

duration (overall and for each of the areas of interest separately). 

Our goal is to provide recommendations as early as possible during the evaluation phase of the respective 

decision. Therefore, we aimed to partially cut off the orientation and validation phase of the decision 

process as described in the on-the-fly-detection decision phase model by Peukert et al. (2020). In the 

orientation phase, consumers scan their environment, get an overview of the assortment, and do not 

compare different product choices in detail. For our data, the average transition from orientation to 

evaluation occurred in second 8 and the second transition from evaluation to verification occurred in 

second 47. Accordingly, we considered all integers in the interval [0;  15] seconds as start values for our 

time series and all integers in the interval [20;  45] seconds as stop values. Using these intervals logically 

entailed to exclude decisions which lasted less than 45 seconds. Therefore, keeping shorter decisions 

would have confounded the input time series because trials shorter than 45 seconds would have to be 

filled with default values. After excluding all purchase processes shorter than 45 seconds, 516 relevant 

product choices remained for evaluation, with 78 (15.1%) healthy choices. To train and evaluate the 

classification models, a random split of training (60%), validation (20%), and test (20%) was used. We 

also allowed for recurring customers, i.e., we did not assign all trials of one participant to a single set. 

This means we assume that customers can return to the store, which is typical for grocery shopping. 

Time Series Classifier 

The deep learning approach InceptionTime (Ismail Fawaz et al. 2020) is a time series specific successor 

to the image classification model Inception, also referred to as GoogLeNet (Szegedy et al. 2015). 

InceptionTime is one of the current state-of-the-art deep learning approaches for time series 

classification (Middlehurst et al. 2021). The InceptionTime building blocks mainly consist of 

convolutional layers and pooling layers (Aggarwal 2018). The reference implementation proposes to 

stack six InceptionTime modules sequentially. As shown on the left in Figure 4, each module consists 

of several stages. A bottleneck layer (stage 1a) reduces the input dimensionality. The main components 
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are three convolutional layers of different kernel sizes (stage 2a). Additionally, a parallel MaxPooling 

layer (stage 1b) makes the model invariant to small perturbations. This is followed by another bottleneck 

layer (stage 2b) to reduce dimensionality. At the end of each module (stage 3), the output of the 

convolutions and the max pooling operation are concatenated and serve as input to the next layer. As 

shown on the right in Figure 4, InceptionTime uses shortcut connections between every third 

InceptionTime module. These shortcuts help to overcome the vanishing gradient problem (Hochreiter 

1998) and overfitting (Goodfellow et al. 2016). Finally, a dense classification head (a fully connected 

softmax layer) outputs the predicted probabilities for each class. 
. 

 

Figure 4. An InceptionTime module on the left and a shortcut connection on the right. Adapted from 

Ismail Fawaz et al. (2020). 

The Inception architecture is based on two main ideas: First, reducing the dimensionality (via bottleneck 

layers) keeps the computational complexity low and mitigates overfitting for small datasets. Second, 

convolutional components with different receptive fields capture different aspects of the time series 

(Luo et al. 2016). For temporal data, the receptive field can be thought of as the maximum field of view 

of a neuron. The larger the receptive field is, the longer the patterns that can be detected by the neuron. 

The model uses multiple parallel, densely connected convolutional layers with different kernel sizes (see 

Figure 4, stage 2a) that allow to capture different aspects of the time series. During the trials, an 

asynchronous hyperband scheduler (Li et al. 2020) facilitated the exploration of 50 different 

combinations. Table 1 shows the complete hyperparameter space. 

Name Values Description 

Activation function ReLU (Agarap 2019),  eLU (Clevert et al. 2015)  

Alpha  [0.1; 0.3] Uniform Focal loss 

Bottleneck size (32, 64, 128) Inception Module 1a, 2b 

Gamma [0.1; 0.3] Uniform Focal loss 

Kernel Multiplier (4, 6, 8, 18) Inception Module 2a 

Learning Rate [1e-1, 1e-6] Log uniform Optimizer 

Num Filters (8, 16, 32) Inception Module 2a 

Num Modules (3, 6) InceptionTime 

Table 1. The hyperparameter space which we used in the InceptionTime tuning process. 

In total, the different start, stop, and step size values resulted in 4990 possible combinations. A high-

performance cluster was used to compute all respective trials. The Ray Tune framework (Liaw et al. 

2018), combined with the slurm task scheduler (Yoo et al.), allowed us to partially parallelize the 

optimization of the InceptionTime instances, which all ran for a maximum of 100 epochs, using up to 

75 compute nodes equipped with 24 CPU cores. 

Class Imbalance Treatment 

In our data, only 15.2% of choices were for healthy products. The applied methods need to take this 

class imbalance into account. Otherwise, classifiers tend to always predict the majority class. Different 

paradigms to treat imbalanced data exist, namely data-level, algorithm-level, and hybrid methods 

(Krawczyk 2016). We used an 𝛼 balanced focal loss function (Lin et al. 2017) for the neural network 

optimizer to discount the majority classes. It is a hybrid approach that combines cost modifying and 
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algorithmic adjustments. Focal loss is a modification of the widely used cross-entropy loss function 

(Goodfellow et al. 2016). The main idea is to discount correctly classified samples of the majority class, 

i.e., the contribution to the total loss value is large for wrong predictions of the minority class. Focal 

loss and can be denoted as 

 
𝐹𝑜𝑐𝑎𝑙𝐿𝑜𝑠𝑠(𝑝𝑡) = −𝛼𝑡 (1 − 𝑝𝑡)𝛾  log (𝑝𝑡), with 𝑝𝑡 = {

𝑝, 𝑖𝑓 𝑦 = 1
 1 − 𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 . (1) 

Parameter 𝛼𝑡 specifies the minority class proportion in the test data set, 𝑝𝑡 ∈ [0, 1] is the predicted class 

probability for the sample, and 𝑦 ∈ {0, 1} is the target label. The focusing intensity 𝛾 ≥ 0 determines 

the rate for discounting easy samples. Note that, when  𝛾 = 0, focal loss equals cross-entropy. 

A further algorithmic measure is the evaluation with a suited scoring metric. For the prediction of 

imbalanced data the accuracy metric is unexpressive (Bekkar et al. 2013). Accuracy would put too much 

attention on unhealthy product choices (precision) and too little on healthy ones (recall). The 𝐹𝛽 metric 

allows to adjust the trade-off between recall and precision (Maratea et al. 2014). A value for parameter 

𝛽 greater than one emphasizes the importance of recall while a value less than one emphasizes the 

importance of precision. For this study, 𝛽 = 1.5 is used because we focus more on recall than on 

precision. Choosing 𝐹𝛽=1.5 means we deliberately expose some of the purchasers of unhealthy mueslis 

to recommendations for healthy products as trade-off for a higher classification rate of intended healthy 

product choices (which may be interpreted as a form of nudging). The 𝐹𝛽 score (Maratea et al. 2014) 

can be denoted as  

 𝐹𝛽 = (1 + 𝛽2) ∙  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+ 𝑅𝑒𝑐𝑎𝑙𝑙
 . (2) 

Gradient Boosting Trees Baseline 

This gradient boosting baseline considers aggregated, one-dimensional, features, which is the current 

standard. Utilizing multi-dimensional features in form of time series is more promising because it allows 

considering the complete decision-making process in form of a vector, from the start of the purchase 

situation until the point-of-time when a recommendation should be made. 

Gradient boosting served as a baseline for this study, as it has shown good results in similar setups 

(Millecamp et al. 2021; Pfeiffer et al. 2020). We implemented it using the XGBoost (Chen and Guestrin 

2016) and scikit-learn (Pedregosa et al. 2011) packages. This model did not require a distinct validation 

dataset for training. Instead a 10-fold cross validation (Refaeilzadeh et al. 2009) ensured generalizability 

on the data set, permuting the combined training and validation subsets. The features for the gradient 

boosting model consist of the same underlying information (e.g., number of fixations) but aggregate it 

with respect to the total interval length. Analogous to the time series, we used 𝐹𝛽=1.5 as scoring metric 

and chose the intervals [0;  15] for start timestamps and [20;  45] for stop timestamps. To find a good 

set of hyperparameters (colsample_bytree, gamma, learning_rate, max_depth, min_child_weight, 

n_estimators, scale_pos_weight, subsample) a randomized search was performed for 100 trials on all 

possible start-stop combinations. 

4 Results 

Figure 5 shows two different prediction horizons (i) the first 25 seconds and (ii) the first 45 seconds of 

the decision process. The 25-second horizon is based on the idea of making recommendations early in 

the product evaluation process. A recommender system would have enough time to generate content 

after a feature extraction phase of 25 seconds at the beginning of the decision process. On average, the 

45-second horizon covers the entire evaluation phase and can be seen as the upper limit for a 

recommender system to make suggestions. 
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Figure 5. The confusion matrices represent the best InceptionTime models for healthiness preference 

predictions within the first 25 (left) and 45 (right) seconds. 

The best model for the entire prediction horizon of 45 seconds (𝐹𝛽=1.5 = 0.62) did not use the full 45 

seconds. It performed best when considering the time series from second 7 to 43, with a step size of 9.0 

seconds. This model correctly classified 87.05% of the unhealthy choices and 64.70% of the healthy 

choices.  

The model for the shorter prediction horizon of 25 seconds does not perform much worse overall 

(61.17% correct unhealthy classification and 82.35% correct healthy classification). It achieved an 

𝐹𝛽=1.5 score of 0.53. We remind the reader that with a beta of 1.5, we value recall higher than precision, 

i.e., finding most of the healthy choices has priority. This model considered the period from second 4 to 

24 as a time series, using a start-stop interval of [4; 24], and a step size of 1.0 second. It even correctly 

classified more healthy choices correctly compared to the best model for the 45-second prediction 

horizon.  

In contrast, the best performing XGBoost model achieved an 𝐹𝛽=1.5 score of 0.48, using a start-stop 

interval of [0; 38]. It correctly classified 90.5% of the unhealthy choices but only 47.1% of the healthy 

choices. With respect to the prediction horizon of 25 seconds, the best XGBoost model performed 

slightly worse with an 𝐹𝛽=1.5 score of 0.42, using a start-stop interval of [5; 21]. 

In Figure 6, we provide information about the effect of different start and stop values on the maximum 

𝐹𝛽 classification performance. The left plot shows the average effect of different start values. For our 

data, starting in second 5 results in the best average 𝐹𝛽 value. As expected, a decrease in performance 

occurs when a long onset duration is omitted before feeding the model. The right plot shows the average 

impact of different stop values with a peak at second 30. The positive trend for later stop values is also 

plausible, as more information becomes available over time. 
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Figure 6. A timeline showing the average F-Beta value for healthiness preferences predictions 

regarding all evaluated start and stop values. 

5 Discussion 

Although the amount of training data we used was limited and the class distribution imbalanced, our 

work demonstrates a way to use gaze behavior, in our case the extracted fixations and gaze targets, as 

input for recommender systems. With the algorithmic adjustments regarding the misclassification of the 

majority class, we can clearly answer our research question. Yes, with reasonable performance in 

relation to the limited amount of data, we can identify customers who buy healthy products early during 

their decision-making process in a virtual commerce scenario using the InceptionTime deep learning 

approach. However, we acknowledge that current classification rates are not production ready and 

continuous model improvement and data collection are required to eventually allow for accurate 

predictions. 

Our main aim was to correctly classify as many samples of the minority class (healthy choices) as 

possible during the evaluation phase of the decision processes. For the given data set, our results suggest 

that a time series based approach like InceptionTime is a more appropriate classifier compared to the 

shallow XGBoost method. The InceptionTime model with a 1.0 second step size and a start-stop interval 

of [4; 24] is a promising predictor for healthy and unhealthy product choices early in the decision 

process. This model showed that focal loss and the 𝐹𝛽 metric are effective measures to cope with the 

class imbalance inherent to the data set. It achieved the highest 𝐹𝛽=1.5 score of 0.53 in our evaluation 

and correctly classified most of the healthy choices (14 out of 17) while generating nudges candidates 

(a fraction of customers with unhealthy choices, 33 out of 87). The extent of candidate-generation could 

be adjusted by the β parameter for the evaluation metric (in our case we chose β=1.5 and argue that it 

was a good choice because the amount of nudge candidate seems to be appropriate).  

The best XGBoost model achieved an 𝐹𝛽=1.5 score of 0.48 in our evaluation. It correctly classified less 

than half of the healthy choices correctly (8 out of 17) and generated only a small number of nudge 

candidates (8 out of 87). One reason for the lower performance could be the fact that the scikit-learn 

implementation of XGBoost does offer a focal loss function. However, recently Wang et al. (2020) 

implemented a focal loss function for the XGBoost algorithm that may serve as drop-in replacement in 

scikit-learn. A comparison between InceptionTime and an XGBoost model with implemented focal 

losses might offer a more equitable benchmark and could potentially alter the results' significance. The 

XGBoost model could also benefit from advanced sampling techniques, such as creating synthetic 

samples with small deviations from the real observations (Chawla et al. 2002), but this is beyond the 

scope of this research. 

Regarding start values, the best InceptionTime models started early for both the 45 and the 25 second 

prediction horizon (second 4 and 7, respectively). Thus, it seems advisable to start the time series 

possibly early. Another viable option may be to decide on an individual case basis when the orientation 

phase ends, e.g., by detecting the gaze pattern which represents the first comparison of two products 
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(Peukert et al. 2020). In terms of stop values, the results unsurprisingly exhibit a positive linear trend 

for the maximum 𝐹𝛽 score, i.e., an increase of performance with the duration of the prediction horizon. 

However, the graph shows a lot of variances around second 25, 30, and 40 and it might be 

counterintuitive that for the stop values after second 40, the maximum 𝐹𝛽 values mainly decrease. For 

earlier stop values, our results show that the prediction quality can remain relatively good, e.g., when 

stopping after 24 seconds. The corresponding InceptionTime model correctly classified only one healthy 

customer less (out of 17) than the best InceptionTime model which had access to additional 16 seconds 

of ET data of the decision processes. This further supports the importance of the early decision phase 

for the correct classification of healthy customers. 

An open question remains the choice of a possibly ideal step size. We evaluated many different step 

values, which cost a lot of (computation) time and energy. Finding and validating a better theoretical 

foundation, to explain for what reasons a certain overlapping technique should be applied, could prove 

very helpful. 

As theoretical contribution, our study confirms that leveraging a complete time series of ET data and 

feed it into a convolutional network can be superior to treating the ET data as cross-sectional data. 

However, the performance gain in comparison to a basic XGBoost model is only a first proof of concept 

and both the baseline and the classification model can further improve. 

Before closing, we reflect on ethical considerations, particularly with regard the use of our classification 

model as input for recommender and other context-aware AI systems. We used gaze information of our 

participants to infer their willingness to buy healthy food and prioritized healthy purchases. In the design 

of our model, we accepted a bias towards healthy classification, what may lead to a nudge for a certain 

fraction of customers who would not necessarily appreciate suggestions for a healthy product. We argue 

that such a nudge would be ethically valid, as it fosters socially desired behavior. However, there is an 

ongoing debate in what situations nudging is desirable and when it should be avoided altogether 

(Hausman and Welch 2010). In any case, “[c]hoice architecture, both good and bad, is pervasive and 

unavoidable, and it greatly affects our decisions.” (Thaler and Sunstein 2021, p. 252). 

From a technical standpoint, our study suggests that time series classification enables real-time feature 

generation for recommender systems using gaze patterns. Our results indicate that the longitudinal point 

of view offers more relevant information than aggregations to statistical moments that span over the 

whole decision period. We acknowledge that further research and validation are needed to improve the 

reliability and generalizability of our findings. Nonetheless, we hope that the presented approach 

encourages practitioners to integrate recommender systems in virtual commerce environments. From 

our point of view, it is only a question of time until we experience various (most likely artificial 

intelligence assisted) tools which support and improve healthy food choices based on individual sensor 

data. Overall, the use of suitable deep learning models, such as InceptionTime, could potentially change 

the state-of-the-art for developing personalized interventions. In combination with large language 

models, time series classification and cutting-edge deep learning methods are likely to transform user 

assistance as we know it today. Researchers and practitioners might think about further contexts beyond 

classic collaborative filtering, such as personal trainers and instructors, medical advisors, 

psychotherapeutic treatments, and more. The presented approach could be applied everywhere where 

learning about users' preferences or their decision processes in general can be helpful. Therefore, it 

seems advisable to continue with data acquisition, model evaluation, and workflow integration. 

6 Summary and Outlook 

We proposed to use an InceptionTime classifier to infer customer preferences during the evaluation 

phase of customer decision processes using gaze patterns. Our focus was on classifying customers who 

buy healthy products in a VR setup. The results show that InceptionTime, in combination with class 

imbalance measures, can outperform a shallow gradient boosting model in classifying healthy purchase 

decisions while generating candidates for healthy food nudges. 
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The main limitation of this study is the fact that our sample consists of only 516 purchase decisions, of 

which only 15.1% were made for healthy products. Deep learning models are typically trained on much 

larger datasets (Szegedy et al. 2016), and we believe that the full potential of deep time series 

classification approaches will remain unexplored until such a large dataset becomes (publicly) available. 

However, in order to collect such a dataset, the legal consensus regarding privacy concerns for ET data 

needs to be solidified. Another limitation of this study is that we only considered product labels (the 

most visually salient information) to classify products as unhealthy or healthy when defining the ground 

truth. Future research could use more fine-grained information, such as ingredient lists and nutritional 

tables. With detailed information about a product's composition, recommendations could take additional 

aspects into account. A highly relevant example is the detection of allergies, e.g., many people are 

allergic to nuts. Consumers could decide whether to hide such products altogether or receive a multi-

sensory warning when they focus on a critical product. 

Overall, we see several avenues for future virtual commerce focused research. One prominent concern 

is the treatment of privacy issues. Deliberate actions, such as body movements or use of voice, can be 

controlled by the customers. In contrast, the gaze as such is less under consumer control and fundamental 

to decision making. ET data can identify individuals and might reveal unwanted personal aspects 

(Cantoni et al. 2018). Thus, research should invent, evaluate, and reflect on different suitable (pseudo) 

anonymization techniques (Steil et al. 2019). Privacy research enables device vendors and digital 

commerce providers to avoid pitfalls and fosters trust among customers. The nudge aspect of this work 

is another route to follow. Healthiness is only one aspect of socially desirable behavior but there are 

further areas, such as sustainable consumption, which could be investigated by further research. 

Regarding data collection, upcoming studies should include a broader variety of available information. 

Pupillometry and additional bio sensors seem to be a promising source for additional input features 

(Halbig and Latoschik 2021). Furthermore, time series classification evolves quickly and new classifiers 

emerge frequently, e.g., InceptionFCN (Usmankhujaev et al. 2021) or TapNet (Zhang et al. 2020). These 

models may have the potential to yield better classification rates and should be compared with the 

presented results. 

Future research should predict further dependent variables and showcase a real recommendation 

pipeline. In addition to healthy products, we argue that brand and flavor preferences are particularly 

interesting. Such a follow-up study should rethink the large-scale hyperparameter searches. These 

searches do not necessarily enumerate all presented start and stop value combinations as presented in 

this study. Instead, it should benchmark different algorithmic design aspects, like predicting preferences 

for new customers only or limiting the feature set, which would provide further managerial insights. 

Next, a follow up should introduce a better baseline, e.g., by comparing InceptionTime with previously 

mentioned deep learning time series classification methods. Overall, we suggest iterative improvements 

by means of ongoing experiments with the latest sensor technology available, such as 

electroencephalography (event related potentials), facial features, body posture, pupil dilation, and 

maybe functional near-infrared spectroscopy (fNIRS). With all measures combined, we expect the 

predictive performance and validity to improve significantly (unfortunately, the same is true for 

complexity). From our perspective, a long-term goal should be to hone a publicly available machine 

learning pipeline, similar to the presented one, and ultimately showcase it as real-time feature generator 

for a recommender system in real virtual commerce setups. 
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