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ABSTRACT

This paper presents a voice assistance system for extended reality
(XR) applications based on large language models (LLMs). The
aim is to create an intuitive and natural interface between users
and virtual environments that goes beyond traditional, predefined
voice commands. An architecture is presented that integrates LLMs
as embodied agents in XR environments and utilizes their natural
language understanding and contextual reasoning capabilities. The
system interprets complex spatial instructions and translates them
into concrete actions in the virtual environment. The performance
of the system is evaluated in XR scenarios including object ma-
nipulation, navigation and complex spatial transformations. The
results show promising performance in simple tasks, but also reveal
challenges in processing complex spatial concepts. This work con-
tributes to the improvement of user interaction in XR environments
and opens up new possibilities for the integration of LLMs in XR
environments.

Index Terms: Voice-based interaction, Mixed reality, Large lan-
guage models

1 INTRODUCTION

Recent technical advances in the field of Large Language Models
(LLMs), such as OpenAI’s GPT models, have the potential to im-
prove the way in which systems understand and process language
by showing emergent behaviors such as reasoning, solving mathe-
matical issues, or interacting with the world and with humans [7, 6].

In the context of XR applications, LLMs may enable more natu-
ral and intuitive user interactions. Instead of relying on a restricted,
pre-defined set of commands to express their intentions, which re-
quires users to learn how to use the system a priori, users can
communicate their intentions in a natural way in their own words.
Moreover, LLMs show emergent behaviors, which allow them to
interpret, draw conclusions, and even plan independently within
certain limits [7, 34, 17]. This flexibility may increase accessibility
of XR applications for casual users, users with little to none do-
main specific knowledge (e.g. in training applications), or people
with cognitive impairments. LLMs can help to correctly interpret
the intended interaction despite unclear voice commands by adding
other information as context [31].

The main contribution of this paper is an approach which defines
an interface between the user, the virtual environment (VE), and the
LLM. The architecture of an embodied agent is able to reason logi-
cally about input from defined interfaces and perform actions on the
users behalf within the virtual environment (see Figure 1). A first
study demonstrates the performance of the implemented prototype
using user generated commands collected in an online survey.

The presented approach may be applied in a variety of XR ap-
plications. Examples are games, in which players navigate using
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Figure 1: High-level system architecture of the proposed assistance
system.

voice commands and interact with virtual objects, or training ap-
plications, in which users are guided through complex scenes and
can explore certain tasks using voice commands. In particular for
training and education, this technology may enhance existing ap-
proaches by allowing users in early learning stages, in which the vo-
cabulary of the domain is not yet developed, to express themselves
in their own words and learn about the domain specific vocabulary
on-the-job by the assistant’s feedback. In addition, the system can
also be used in rehabilitation or remote control of devices, where it
can enable users with limited mobility to perform tasks in the vir-
tual environment using voice commands. This means that the voice
assistant can help to improve the accessibility and user-friendliness
of XR applications and enable more people to use them.

2 RELATED WORK

This paper builds on several areas of research dealing with language
interaction in virtual environments, the integration of LLMs into
interactive systems, and the reasoning capabilities of AI models.
Before going into details, it is important to understand the different
types of interaction in virtual environments.

In XR applications, there are three main types of interaction:
selection, manipulation, and locomotion. While an XR appli-
cation usually requires all three, the approach considered here,
for a starter, focuses primarily on locomotion. Voice-based loco-
motion as co-existing alternative to conventional interaction tech-
niques (e.g. controller-based) may be particularly useful in situa-
tions where the user’s hands are otherwise occupied, such as when
carrying virtual objects or performing complex manual tasks.

In the following we thus focus on locomotion, however, the pre-
sented work is part of a larger study which also addressed selection
and manipulation tasks.

2.1 Voice-Based-Locomotion
Using language for control and interaction in VEs has been subject
of research for a long time. Early work focused mainly on prede-
fined commands or restricted vocabularies [12, 14, 4].

Hombeck et al. [14] did a comprehensive study on three different
speech-based locomotion techniques. All of them were triggered by



Figure 2: Compared to direct, controller-based interaction, LLMs may
support users on multiple levels of interaction.

specific keywords. Their results show that voice-based locomotion
techniques may compete with conventional controller-based meth-
ods in terms of ease of use and efficiency.

Beyond monomodal approaches, a multimodal interface may
provide additional benefits, as has been shown by Sin et al. [30],
who investigated the combination of speech recognition and hand
tracking in virtual reality. They proposed a hybrid approach that
combines speech recognition with gesture recognition to increase
the accuracy of identifying user intentions.

2.2 Embedding LLMs Into Virtual Environments

The integration of LLMs in VEs is a relatively new field of re-
search that has gained in importance in the past year. Recently,
Biggie et al. [3] described NavCon, an approach that utilizes mod-
ern computer vision, classical robotic planning algorithms, and the
reasoning capabilities of LLMs to perform zero-shot navigation us-
ing natural language in different environments. They showed how
to combine the strengths of LLMs in natural language and context
processing for orientation and decision making in VEs.

Huang et al. [17] combined two LLM chains in an innovative
way to control robots in a simulated environment. The first chain
is responsible for interpreting human instructions, while the second
chain acts as an ”embodied agent” and plans as well as executes the
actual actions. Their approach show parallels to the concept of an
LLM-based embodied agent in VEs presented in the work at hand.

A fundamental contribution to the integration of LLMs in VEs
has further been made by Huang et al. [16]. They investigated
whether the world knowledge contained in LLMs can be used to
act in interactive environments. Using a VirtualHome environment,
they showed that LLMs, such as GPT-3 and Codex, are capable of
converting high-level natural language instructions into executable
action sequences without the need for additional training. This
work demonstrates the potential of LLMs for planning, decision
making, and acting in VEs.

VOYAGER by Wang et al. [32] is an autonomously acting and
planning Minecraft agent that uses LLMs to make decisions. The
agent can solve complex tasks in the Minecraft world by translat-
ing natural language instructions into concrete actions. This work
demonstrates the potential of LLMs for autonomous action in VEs.

Despite the promising progress enabled by LLMs, there are still
numerous challenges in integrating LLMs into interactive systems.
Mirchandani et al. [22] discussed the limitations of LLMs as gen-
eral pattern recognition engines and emphasized the need to inte-
grate domain-specific knowledge for specific applications.

Liu et al. [21] investigated the ,,lost in the middle” problem of
LLMs, where information in the middle of long contexts is pro-
cessed less effectively. This is particularly relevant for the develop-
ment of systems with long-term memory, as proposed in this paper.

2.3 Reasoning Capabilities of LLMs
The ability of LLMs to reason is a central aspect of their application
in complex interaction scenarios. However, it is more of an emer-
gent behavior and not build in from ground up. Different strategies
have been found to guide the LLM in the reasoning process. Wei
et al. [35], for example, developed the ,,chain-of-thought” (CoT)
approach, which encourages LLMs to break problems down and
solve them step by step. This technique is effective in improving
the performance of LLMs in complex reasoning tasks.

Kojima et al. [18] extended this approach to zero-shot prompt-
ing: they showed that LLMs are able to solve complex reasoning
tasks without specific training or examples, which significantly in-
creases the flexibility and applicability of these models.

Yao et al. [37] developed the ,,ReAct” approach, which combines
reasoning and acting in LLMs by enabling them to switch between
thinking and acting steps, which is particularly relevant for use in
interactive environments.

There are numerous papers which benchmark LLMs regarding
their capability to ,,reason” [15, 10, 9]. Spatial reasoning is a cur-
rent and challenging field of research with many open questions.
While LLMs are able to handle complex text-based tasks, they
still show weaknesses in the processing and interpretation of three-
dimensional spatial information. The available benchmarks for spa-
tial reasoning show that current LLM performances are not yet very
satisfactory [19, 23]. While many advanced techniques for improv-
ing spatial reasoning exist [36, 29, 2], the approach presented in
this paper shows that a basic functionality for spatial reasoning with
LLMs is possible. A major advantage of the presented system is its
modularity and extensibility. This makes it possible to seamlessly
integrate future advances and new techniques in the field of spatial
reasoning without having to fundamentally change the basic archi-
tecture of the system. Thus, the proposed approach provides a flex-
ible platform that can keep pace with the progress of research and
continuously improve spatial reasoning in practical applications.

3 METHOD

The focus of this paper is on the development and evaluation of
a voice assistance system for XR applications using LLMs. The
presented system aims to create a natural and intuitive interface be-
tween users and VEs that allows users to express their action inten-
tions in a more flexible and natural way than classic command and
control techniques.

3.1 Overview
The main objectives of this paper include several aspects:

An architecture that effectively integrates LLMs into XR en-
vironments, taking advantage of the strengths of these models in
terms of language understanding and contextual reasoning. For this
purpose, a generic approach was developed to enable the LLM to
interpret complex spatial instructions, using spatial knowledge, and
long- as well as short-term memory in the reasoning process, to fi-
nally derive concrete actions that are executed in the VE. To achieve
this, an ,,embodied agent” approach was implemented enabling the
LLM to act from the perspective of the user embedded in the VE.

A robust mechanism for representing and processing spatial in-
formation, enabling the LLM to effectively ,,understand” the 3D
environment.

A memory system that manages both short-term and long-term
information to enable contextualized and consistent interactions
over extended periods of time.

An evaluation of the approach in different XR scenarios to ana-
lyze its performance and limitations.

3.2 Selected Use Cases with Focus on Locomotion
In the target use cases, interactions are initiated by the users using
natural language, who are describing what they want to do. For



locomotion, we have identified the following three types of naviga-
tion:

1. Egocentric relative locomotion describes navigation relative
to the user’s current position and perspective of view. Exam-
ple: ,,Move 2 meters forward.”

2. Point-of-Interest-based locomotion means navigation to an
object or reference point that can be identified by the user.
Example: ,,Move to the window.”

3. Sequential locomotion refers to navigation by means of a se-
quence of several movement instructions. Example: ”Move
to the car and turn by 180 degrees.”

It is important to note that all these types of locomotion could
be context-dependent, particularly with respect to the dynamic en-
vironment and past actions. This context-dependency adds an addi-
tional layer of complexity to navigation tasks in XR environments.
This includes environmental context, which includes the current
state of the virtual environment, as well as the historical context,
which references past actions, objects, or locations. Also, task spe-
cific context can be provided to the LLM so that user instructions
can be interpreted based on the current task or goal of the user.

3.3 The Co-Embodied Agent Architecture
A central element of this method is the ,,co-embodied agent” [13]:
an assistive agent is co-embodied with the user in an avatar. This
agent provides natural language understanding (using the LLM)
and is able to implement user instructions and plans into actions
of the avatar, by this mediating the interaction between the user
and the virtual world. These actions can range from movements of
the avatar itself to manipulation of objects. Technically, the agent
receives instructions through structured prompts and can access a
predefined library of functions that trigger specific actions in the
virtual environment. While the study of Fribourg et al. [13] showed
mixed results when two humans were sharing the same avatar, in
the present case the user is authoritative and the agent compliant to
the user’s intentions. Mismatches of intentions and actions, which
are a main cause of problems when two beings share one avatar,
are thus only an issue when the agent misunderstands the commu-
nicated intentions and reparation processes are necessary.

One of the frameworks for implementing embodied agents with
LLMs is the so-called ReAct approach by Yao et al [37]. ReAct
(,,Reason” + ,,Acting”) aims to integrate the ability of LLMs to
reason, plan, and act in one approach. Approaches such as CoT
are only suitable for helping the LLM to reason. Other approaches,
such as ChatGPT’s approach of giving the LLM access to the Inter-
net via a plugin, only provide the LLM with the ability to act. Yao
et al. [37] have shown that both approaches combined lead to better
performance when solving tasks.

The agent can be seen as a dynamic prompt chain, where each
single message inside the chain is being dynamically manipulated
and injected by the agent’s runtime (see Figure 3). The static sys-
tem prompt (1) consists of general instructions, introducing the
LLM to its task and the prompting mode that will be introduced
in the next step. After that, there is another static prompt called Re-
Act-Prompt (2), which introduces the Chain-of-Thought (CoT) [35]
principle as well as the ReAct method as the framework for running
the thought- and act-process. Even though Kojima et al. [18] have
showed that CoT can work with zero-shot-prompting, our own ex-
periments showed that one-shot-prompting (4) led to better results.
In order to improve the reasoning capabilities of the LLM, self-
consistency by Wang et al. [33] can be employed to replace the
greedy strategy of running the ,,think”-loop just once by running it
multiple times in parallel and choosing the most common action.
In the following, the individual modules contributing to the chain
composing the prompt are elaborated in more details.
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Figure 3: The composition of the prompt chain architecture of the
agent. Application static parts are created once, session dynamic
parts are updated after each user request, and interaction dynamic
parts are updated while processing one request.

3.4 Spatial Understanding
The ability to understand spatial relationships and contexts is im-
portant in order to integrate LLMs into XR environments. There are
various approaches to implement spatial understanding into LLMs.
Since LLMs are made for processing text sequences, the challenge
lies in bringing three dimensional information from the virtual en-
vironment into a textual representation, that LLMs can interpret. It
is important to pre-process this information in a way that maintains:

Scalability The approach must be able to be used in scenes with
potentially many objects and complex spatial relationships.
This typically conflicts with the token length of the potential
input of a LLM prompt.

Performance It must process the information in a reasonable
amount of time.

Context Sensitivity It is important that there is some kind of fil-
tering so that, ideally, the LLM does only get information that
is required for the current task.

Perspective Since the LLM is acting from the point of view of the
user, the approach has to memorize the current perspective the
user is having on the scene.

Generalizability The user should not need to learn specific key-
words for objects. Instead, the LLM should use its language
capabilities and world knowledge to successfully reason about
what object the user is referring to.

It is important to note that the component for spatial understand-
ing is interchangeable and in practice will depend on the application
domain. The approach chosen here only demonstrates the general
feasibility. Further work should replace the component with a more
robust and efficient method.

This paper presents an approach that aims to address these chal-
lenges in a basic way and effectively bridges the gap between
the three-dimensional nature of XR environments and the text-
based processing of LLMs. This approach is based on a textu-
ally structured transformation of spatial information that enables



LLMs to understand and process complex spatial relationships.
Similar approaches have been successfully demonstrated in other
fields [11, 39, 1, 8, 20].

For creating a textual spatial representation, a basic scene-to-text
technique based on a 3D scenegraph representation is used which
first identifies all visible objects from the perspective of the virtual
camera, following a two-stage approach: Firstly, the dot product is
used to filter out objects that are behind the camera. Raycasting
is then used to check whether the remaining objects are actually
visible or are obscured by other objects. This method minimizes the
number of computationally intensive raycasts and efficiently filters
all objects that are visible to the user.

Once the visible objects have been identified, a spatial graph is
generated that represents the topological arrangement of the objects
in space. Nodes thereby represent the objects whereas edges define
the relationships between them. The DBSCAN algorithm is used to
cluster all objects. After that, the nodes are connected by edges that
represent the spatial relationships between the objects. These rela-
tionships are identified by orientation vectors in combination with
relative positions and describe positions such as ,,to the right of”
,,to the left of”, ,,above”, and ,,below”. Depth-based relations such
as ,,behind” or ,,in front of” are currently not used in order to reduce
complexity and thus token length of the textual representation, but
are easy to implement likewise, if required. Instead, the distance of
each object to the camera is calculated so that the depth informa-
tion can be reconstructed, if needed. This assumes that users would
rather talk about objects in relation to each other in an orthogonal
manner, which depends on the application domain.

Each object in the Spatial Graph is annotated with extensive
metadata that provides the LLM with contextual and semantic in-
formation. This metadata includes a unique identification number
(ID), a general name, and a list of attributes that describe addi-
tional properties of the object, such as color, material, or other rel-
evant characteristics. Also, invisible virtual objects called ,,Point-
of-Interests” are introduced to be able to mark certain abstract lo-
cations, such as rooms or landmarks, without the need of actual
3D geometries. This information is essential to enable the LLM to
provide a precise and comprehensible description of the environ-
ment. The presented approach requires attribution of metadata to
objects, either through manual annotation or automated processes.
Methods for the automatic generation of metadata are multimodal
models like CLIP (Contrastive Language-Image Pre-training) by
OpenAI [26] or object detection algorithms such as YOLO (You
Only Look Once) [28]. These approaches could be used to extract
semantic information from the rendered image, however, doing so
at runtime increases the total system latency significantly. Mul-
timodal large language models such as GPT4-o by OpenAI [25]
could be used in the future to allow the model to use the visual data
as part of the user prompt. Whether this is a viable alternative to
the Spatial Graph remains to be evaluated, as the multimodal-based
automatism might be more difficult to tune for specific application
domains.

The final step of the Scene-To-Text generation is to export the
generated spatial graph into a textual description. This description
lists all clusters and the objects they contain, including their IDs,
names, attributes, and distances to the camera. In addition, all rela-
tions between the objects are described in a structured form in order
to provide the LLM with a complete picture of the scene. For this, a
rudimentary domain specific language (DSL) has been developed,
as depicted in Figure 4. This DSL is explained to the LLM as part
of the system prompts as well as being part of the one-shot sample.

That textual scene graph, generated by the time of the user’s ini-
tial input, is injected into the prompt chain by default as part of the
thinking-loop (6), so that there are no redundant think steps regard-
ing any ,,GetEnvironment()” function call.

For more complex environments, a hierarchical structure in the

Figure 4: Top Left: Current scene; Bottom: Representation as Spa-
tial Graph after clustering and identification of spatial relations; Top
Right: Fragment of the prompt generated for the LLM.

Spatial Graph has been implemented. Objects can be summarized
in higher-level groups, which allows scenes to be serialized to text
at different levels of detail. This is particularly useful for processing
large or complex XR environments.

3.5 Memory using ,,Self-Summary”
To ensure the integrity of the interaction, an approach was imple-
mented that tracks user initiated changes in the virtual environment
textually. The LLM not only receives information about the cur-
rent state via the context, but also about relevant changes since the
last interaction. This enables a logical understanding of the scene
across time and interactions.

For this, the agent relies on two levels of memory, short-
term-memory (STM) and long-term-memory (LTM). The STM, or
,,working memory”, is being implemented solely by using the Re-
Act framework and keeping all prompts in the chain which are rel-
evant for the current interaction or ,,think”-loop (6).

In order to keep the chain short, and to only keep important
events, that STM is being cleaned up when an interaction finishes.
It is then being replaced by a summary which the LLM is pro-
ducing itself at the end of an interaction. Through this concept of
,,self-summary” (7), the STM is independently integrated into the
LTM by the LLM itself. LLMs are very effective at summarizing
things [38]. The instruction ,,I’ll summarize at the end what has
happened since the last user request.”, combined with an one-shot
example in the prompt triggers this summary automatically. The
assumption here is that the summarized interaction is sufficient to
extract enough information for possible references in future inter-
actions. The thought processes in the STM are no longer relevant
for later references. It is only important what the user wanted and
what the system made of it.

3.6 Linguistic Repairs
To enable the system to resolve ambiguities and uncertainties, ,,lin-
guistic repairs” allow the system to clarify the content and under-
stand the correct intention through conversational feedback. By
giving the agent the ability to call a ,,GetFeedback()” action, which
is implemented to show the user the response of the LLM and to



allow the user to record a response, the agent can use clarifying
queries (,,Do you mean the left cube on the table?”), solve ambi-
guities (,,I can see multiple cubes, do you mean the red or the blue
one?”), gather context information (,,Based on the previous inter-
actions, do you want to teleport to the window in the first floor?”),
or be fault tolerant towards linguistic inaccuracies (,,You said you
want to take the block. Are you referring to the cube on the table?”).

Linguistic repairs allow the system to be more robust, improve
the UX, and allow for more human-like behavior, which is charac-
terized by underspecified instructions, which are developed within
a negotiation of meaning in an iterative manner. Linguistic repairs
have to be implemented using prompt engineering to make sure the
LLM is using these feedback mechanisms in a reasonable way.

3.7 Multimodality
The system is designed to integrate other modalities in addition
to spatial representation. This includes, for example, information
from gesture recognition or eye tracking. This multimodal integra-
tion enables the LLM to develop a more complete understanding of
the user’s intention. By integrating gaze and gesture directions, it is
possible to resolve unclear instructions that potentially refer to sev-
eral possible objects, thus making the system more error-tolerant.

Multimodality can be implemented by adding the relevant infor-
mation to the DSL of the spatial graph. In this case, objects that
the user is currently pointing at or looking at could be added with
an additional entry such as ”The user is currently looking at ac50f”.
Prompt engineering can be used to instruct the LLM to process this
information as required as part of the reasoning process.

However, it should be ensured that different modalities do not
contradict each other. In addition, a mechanism should be imple-
mented that evaluates and weights the various input modalities, and
only communicates them to the LLM if relevant. When the ob-
jects to be considered for selection can be narrowed down from one
modality, the spatial graph can be pruned accordingly. Ideally, an
additional modality can be used to single out the object for selection
and thus reduce the DSL to a single statement in relation to the user
intention. In the study prototype, multimodality is not realized.

3.8 Implementation
The concept presented was implemented as a modular framework
in Unity, a widely used development environment for XR appli-
cations. The implementation includes several main components
that together form a customizable system for voice-based interac-
tion and locomotion in virtual environments. For the translation of
spoken words into text, any speech-to-text-blackbox can be used.
In our prototype, we have used Whisper by OpenAI [27] via the
public API. The spoken instruction is then passed as text input to
the agent. That agent is using a LLM blackbox (GPT-4 by Ope-
nAI [24]) which it feeds a chain of prompts to. That prompt chain
is being dynamically created and manipulated by the runtime, de-
pending on the users’ actions, the LLMs responses, and the VE.

The system is based on a modular architecture that enables a
clear separation of responsibilities while ensuring close integration
of the various components. The main components are:

• SpatialObject and SpatialObjectBehaviour

• SpatialGraph and SpatialGraphFactory

• LocomotionAssistant

The ‘SpatialObject‘ class serves as the core component for the
representation of spatial objects within the system. Important at-
tributes of this class are

• A unique ID

• The name of the object

• A list of attributes

• Information about tangibility

• Spatial properties such as position, rotation and bounding box

The ‘SpatialObjectBehaviour‘ class acts as a wrapper for the
‘SpatialObject‘ class and extends it with Unity-specific function-
alities through the inheritance of ‘MonoBehaviour‘. This architec-
ture makes it possible to make the ‘SpatialObject‘ instances config-
urable in Unity scenes while maintaining a certain engine agnosti-
cism.

The ‘SpatialGraph‘ structure serves as a data structure for rep-
resenting the spatial relationships between ‘SpatialObject‘s in a 3D
scene. It consists of a list of clusters, where each cluster in turn
contains a list of ‘SpatialGraphNode‘ instances.

The ‘SpatialGraphFactory‘ class is responsible for the creation
of ‘SpatialGraph‘ instances. It implements the following steps:

1. Filtering of visible objects by vector calculations and raycast-
ing

2. Cluster formation using the DBSCAN algorithm

3. Creation of the actual ‘SpatialGraph‘ with nodes for each
‘SpatialObject‘ and edges based on spatial relationships

The ‘LocomotionAssistant‘ class coordinates the interaction be-
tween the user, the LLM and the virtual environment. Core func-
tions include:

• Management of message lists for the context and state of the
interaction

• Implementation of an asynchronous ”think” loop (ReAct) for
processing user requests

• Communication with the external LLM service (in this case
OpenAI’s GPT-4)

• Parsing and execution of generated actions

The class implements various prompting techniques such as
Chain-of-Thought and ReAct.

GPT-4 was used as the LLM via the OpenAI API. Communica-
tion takes place via HTTP requests, with the generated responses
being returned in the form of structured text. The prompts for the
LLM are generated dynamically to ensure the effectiveness of the
Chain-of-Thought and ReAct approach.

Whisper, also from OpenAI, was used for speech recognition.
Integration takes place via a simple HTTP-based interface that con-
verts spoken language into written text with relatively short latency
(1 to 2 seconds, depending on the input length).

A user request is processed as following:

1. The user enters a voice command, which is converted to text
by Whisper.

2. The ‘LocomotionAssistant‘ initiates a ,,think” loop in which
it repeatedly calls the LLM with the current prompt chain.

3. The LLM analyses the request and the environmental con-
text (provided by the ‘SpatialGraph‘) and generates a response
that contains either further considerations or an action.

4. If an action is required, it is executed via the ‘LocomotionAs-
sistant‘ component in the virtual environment.

5. After the interaction is completed, a summary is created and
integrated into the long-term memory.



Several actions are provided to the LLM for execution within the
virtual environment as part of the action definitions (4). For loco-
motion there are these actions: ‘MoveTo(ID)‘, ‘MoveBy(right, for-
ward)‘, ‘RotateTo(ID)‘ and ‘RotateBy(y)‘. The LLM can use these
actions to move and orientate itself relative to an object as well as
in absolute terms. For object manipulation, the actions ‘TakeOb-
ject(ID)‘, ‘PlaceObject(ID)‘, ‘RotateObject(ID, X, Y, Z)‘ and ‘Sca-
leObject(ID, factor)‘ are available to fully manipulate objects ac-
cording to LaViola et al. [5]. The virtual environment also provides
the LLM with two functions for querying the environment. The
‘GetEnvironment()‘ function generates the DSL of the SceneGraph
and is always automatically inserted into the prompt at the start of
an interaction. The ‘Raycast(direction)‘ method allows the LLM to
identify the first object that was hit by a raycast.

4 EXPERIMENTS

To evaluate the effectiveness of the developed voice assistance
system, several experiments were conducted. These experiments
aimed to test different aspects of interaction in virtual environments
and to evaluate the system’s ability to interpret and execute natural
language commands.

4.1 Concept
To ensure a complete and robust evaluation of the developed voice
assistance system, several key objectives were defined to analyze
the performance of the system in different XR contexts. These ob-
jectives include:

1. The evaluation of the system’s ability to understand and im-
plement natural language instructions.

2. The investigation of the robustness against different formu-
lations and degrees of complexity of instructions as well as
the comparison of the system performance with instructions
addressed to humans or to a computer system.

3. Identification of strengths and weaknesses of the system in
different interaction scenarios.

4. Analyzing the efficiency and accuracy of the system when ex-
ecuting user instructions

5. Analyzing the system’s ability to process and use contextual
information.

To achieve these goals, three different scenarios were developed
to cover different aspects of XR interaction. The first scenario, the
,,dice” scenario, focused on object manipulation. In a virtual en-
vironment with a table and four colored cubes, participants were
asked to give instructions to stack the cubes in a specific order. This
scenario presented challenges in terms of precise object identifica-
tion and the interpretation of spatial instructions.

The second scenario, ,,Corridor”, focused on navigation and
locomotion. Here, the participants had to formulate instructions
to navigate through three consecutive corridors with a decreasing
number of landmarks. This scenario tested the system’s ability to
interpret complex navigation instructions and utilize landmarks.

The third scenario, ,,aircraft”, focused on complex object manip-
ulation. In a virtual room with a hovering aircraft model, the par-
ticipants had to give instructions for rotating and scaling the model.
This scenario required a special understanding and ability to imple-
ment complex spatial transformations. It also examines the linguis-
tic variability in relation to the formulation of rotation instructions.

In order to obtain realistic and diverse user input for the eval-
uation, an online survey was conducted with 40 participants aged
between the ages of 18 and 40. The participants were presented

with videos and images of the three scenarios and asked to for-
mulate voice commands in text form. A distinction was made be-
tween instructions to a human and to a computer system. Users
were asked to formulate instructions specifically towards another
human being and, in a second iteration, specifically towards a com-
puter system. This methodology aimed at generating a diverse data
set of natural language instructions and to analyze differences in the
formulation between addressing humans and computers as embod-
ied agents. This approach also helped the participants to avoid any
bias.

A test environment was designed based on the data collected.
The scenarios were implemented in Unity and the language assis-
tance system was integrated into the test environment. The test
procedure included the initialization of the scenario, the input of a
natural language instruction, the processing by the system, the ex-
ecution of the interpreted commands and the automatic recording
and evaluation of the final result. For each scenario, the automated
tests looked like this:

1. Input: Natural language commands from the online survey
data set

2. Processing: Run through the language assistance system

3. Execution: Running the actions of the interpreted commands
in the virtual environment

4. Evaluation: Automatic evaluation of the final result based on
scenario-specific criteria

Both quantitative and qualitative metrics were defined to eval-
uate system performance. Quantitative metrics included the suc-
cess rate, the execution time and the number of actions required.
Qualitative criteria included the accuracy of object identification,
the correctness of spatial interpretation and the appropriateness of
the selected actions of the LLM. In addition, scenario-specific eval-
uation criteria were defined, such as the correct sequence of stacked
cubes in the ,,cube” scenario or the precision of rotation and scaling
in the ,,aircraft” scenario.

The data analysis consisted of both statistical and qualitative
methods. Statistical analyzes included the calculation of means
and standard deviations, linguistic analyses to compare human and
computer addressing performance, and analyses of variance to ex-
amine differences in performance between scenarios. Qualitative
analyzes included the categorization of error types, content analy-
ses of the language assistance system output and linguistic analyses
of user input.

When designing the experiments, limitations such as the limited
sample size of the online survey and the focus on specific XR sce-
narios were recognized and documented.

By combining different scenarios, collecting realistic user input,
and defining clear evaluation criteria, a solid basis was created for
the evaluation of the system, which was intended to show both the
strengths and the potential for improvement of the system.

4.2 Results
The quantitative analysis showed clear differences in the success
rates between the various scenarios. The ,,cube” scenario, which
focused on object manipulation, had the highest success rates with
88.46% for instructions formulated towards humans and 73.91% for
instructions formulated towards a computer system. These results
suggest that the system performs robustly in simple manipulation
tasks, although the slightly lower rate for instructions directed to-
wards a computer system indicates potential for improvement in the
interpretation of technical formulations.

In contrast, the ,,corridor” scenario, which tested navigation and
locomotion, showed significantly lower values with a success rate



of 35.29% for both instruction types. This discrepancy may be due
to the higher complexity of the navigation tasks and the methodol-
ogy of the study. As the user instructions were recorded in advance
and then played back asynchronously, errors that occurred in the
second corridor, for example, could not be corrected. As a result,
the entire interaction was categorized as a failure, even if only a
partial step was not carried out correctly. The fact that the success
rates for human- and computer-directed instructions were identi-
cal suggests that the difficulties lie more in the basic processing of
complex spatial concepts than in the adaptation to different formu-
lation styles. It is worth noting that 64.64% of failed interactions
did successfully pass the first corridor and failures only manifested
along the further sequence of actions. The failures can be classified
into four distinct categories.

Firstly, object recognition errors occurred, with the LLM fail-
ing to identify the correctly referenced objects for both interaction
recipients in one single case each.

Secondly, navigation problems were identified, which mani-
fested themselves in a total of eight cases. These problems were
due to difficulties in resolving the target position through Unity’s
navigation mesh, which was caused by an error in the level design
in Unity. Technically, this means that the fault was per design and is
not a principle problem, however, this also emphasized the sensitiv-
ity of the approach to a proper design, which might require a higher
modeling quality than for standard navigation techniques and thus
will increase the design time of virtual levels.

The third category involved errors in relative movement. Here,
in three cases for each of the two interaction recipients, the LLM
attempted to navigate the user to the end of the corridor through a
sequence of small, 1m-long steps. This procedure ultimately led
to an error due to the maximum permissible number of instructions
being exceeded. This issue can be solved using prompt engineering.

Finally, in one case of instructions directed to humans, it was ob-
served that the LLM was unable to correctly interpret and indicate
the intended direction of rotation, since the user was specifying a
rotation by 90◦ without specifying the direction.

These findings point to specific challenges that need to be con-
sidered when developing and improving LLM-based navigation
systems in VEs. In particular, abilities to correctly recognize ob-
jects, to effectively use the provided actions for locomotion, and to
precisely interpret directional instructions are critical aspects that
require further optimization.

To summarize, the developed voice assistance system shows
promising performance in basic object manipulations and locomo-
tion, but has clear weaknesses in complex spatial tasks and multi-
step navigation instructions. The results emphasize the need to im-
prove the spatial reasoning of the system. Future improvements
could focus on the integration of advanced spatial models and the
development of techniques for more effective processing and stor-
age of contextual information, so that the LLM has more specific
contextual information available for each interaction.

It is noteworthy that the end-to-end latency of the system is cur-
rently still beyond what is acceptable for direct control-based inter-
actions with VR. This is primarily due to the runtime of the LLMs
and speech recognition services, which in this case were online ver-
sions, coming along with higher latencies. However, current devel-
opments in this field of LLMs already show significant speed im-
provements and we expect this to be less of an issue in the near
future.

5 CONCLUSION

This paper shows how a large language model can be used to im-
plement a voice-based assistance system in XR environments. The
presented method demonstrates the potential for natural language
user interactions without relying on predefined voice commands.
The core contributions of this paper include an architecture that in-

tegrates LLMs as embodied agents in XR environments and utilizes
their speech understanding and contextual reasoning capabilities,
a simple method for representing spatial information as a textual
scene graph that enables LLMs to understand and process complex
spatial relationships, the implementation of a ,,self-summary” ap-
proach to managing short- and long-term memory that enables con-
textual and consistent interactions over extended periods of time,
and a comprehensive evaluation of the system in various XR sce-
narios that demonstrates both the potential and the challenges of the
approach.

The results show that the system performs promisingly in basic
object manipulation and navigation tasks. However, weaknesses
were evident in more complex spatial tasks, particularly multi-step
navigation instructions and complex rotations. These findings em-
phasize the need for further research to improve the spatial reason-
ing of LLMs in XR contexts.

Future work should focus on improving spatial representation
and reasoning, possibly by integrating advanced spatial models or
better architectures, optimizing context processing to extract and
use relevant information more efficiently, extending the multimodal
capabilities of the system, to seamlessly integrate gestures, gaze
direction, and other input modalities, investigating methods to im-
prove resilience to different formulations and levels of abstraction
in user instructions, and exploring techniques to reduce latency and
improve the real-time capability of the system. Despite the chal-
lenges identified, this work demonstrates the significant potential
of LLMs to improve user interaction in XR environments. The pre-
sented approach opens up new possibilities for intuitive, context-
sensitive and adaptive assistance systems in virtual and augmented
realities. This system can benefit from all advances in large lan-
guage models and therefore can become better by just connecting
it to a more optimized model. With further progress in this area,
a future can be expected in which interaction with complex virtual
environments becomes as natural and intuitive as communicating
with a human assistant.
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