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Fig. 1: An overview of the learning application. From left to right: Embodied design variant (Drone);
LEAP-1A aircraft engine; non-embodied design variant (Panel).

Abstract: In Virtual Reality (VR) learning applications, the integration of pedagogical agents is
particularly promising, as they function as a virtual social support. With the recent developments
in Large Language Models (LLMs), conversational language models are now available that enable
natural language interaction in a VR environment. We evaluated four possible designs for LLM-based
agents (= = 21) in an aircraft-engine training. Focusing on the primary questions when bringing
LLM-based agents into VR: whether to use text or speech and whether to embody the conversational
agent in 3D or not. Pre- and post-tests were used to measure retention and questionnaires were used to
measure the User Experience (UX) of different design variants. Contrary to our hypotheses, retention
was higher when using a non-embodied design compared to an embodied design. The output modality
did not have a significant impact on the learning success, but it did have an impact on the UX.
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1 Introduction

Virtual Reality (VR) has many applications, including entertainment, healthcare, engineer-
ing, and education [SS16]. In education, VR shows particular promise, with applications
ranging from distance learning to training in dangerous situations or the use of expensive or
otherwise inaccessible equipment [Ka17], such as aircraft engines. Since aircraft engines
are rare, expensive, and difficult to dismantle for training purposes, VR is particularly well
suited for training on these devices. In VR, the virtual engine can be viewed and interacted
with at actual size without having it physically present in the facilities. As VR learning
is usually carried out alone with a Head-Mounted Display (HMD), it could benefit from
the addition of pedagogical agents. According to social agency theory, social cues such
as embodiment, human voice, and personalized conversational style can motivate learners
to invest more effort [Ma14]. The rapid advances in the development of Large Language
Models (LLMs) in recent years make it feasible to integrate conversational agents with
natural language into VR applications.

Many studies have already focused on pedagogical agents and social agency theory. However,
it is unclear to what extent findings from 2D environments can be transferred to VR, given
that there are still limited studies on this topic [Da22]. In immersive scenarios in particular,
the virtual environment itself may increase the extraneous cognitive load, which could lead
to a poorer learning outcome [MP21]. This study therefore investigates how LLM-based
agents can be designed for a VR learning environment to enhance learning outcomes while
maintaining a positive User Experience (UX).

This raises various questions: Should the LLM-based agent be embodied as a 3D figure
or be displayed as a 2D chat window? And should the agent’s responses be presented
via text only (visual output), or via text and speech (audiovisual output)? Such decisions
have a significant impact on the UX, including usability [OB20; Xi23]. Although studies
have been conducted on the integration of LLMs in VR applications, such as for learning
laboratory tasks [Ko24] and generating dialogue in nursing training [Ka24], the design
aspects specifically for immersive learning environments have not yet been widely researched.
Steynberg; van Biljon; van der Merwe [SBM24] conducted a relevant study in which they
proposed design principles for LLM-based agents based on a literature analysis. However,
the authors did not empirically test these principles. Thus, the goal of this research is to
create and evaluate a functional prototype integrating LLM-based agents with different
design characteristics into a VR learning application.

This research contributes by evaluating different design implementations of LLM-based
agents in a VR learning application. Guided by social agency theory, a reversed modality
effect and formative interviews we formulated four hypotheses (see Tab. 1): H1 An embodied
agent will improve learning compared to a non-embodied agent; H2 An embodied agent will
improve UX compared to a non-embodied agent; H3 Presenting information only visually
(as text-only) will improve learning compared to presenting information audiovisually
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ID Hypothesis Rationale

H1 RetentionEmbodied >

RetentionNon-embodied

According to the social agency theory, agents with social cues, such as
embodiment, can enhance learning [Ma14].

H2 UXEmbodied > UXNon-embodied A thematically fitting embodiment can improve the UX [SBS19].

H3 Retentionvisual > Retentionaudiovisual A reversed modality effect has been found in VR [AS23; Ba20].

H4 UXEmbodied audiovisual > UXEmbodied visual Users expect audio modality when using an ECA [Su19].

Tab. 1: Hypotheses

(text + voice) and H4 An embodied agent that speaks will improve the UX compared to a
non-speaking agent. The research was conducted in cooperation with Lufthansa Technik.

2 Related Work

Two core aspects of VR are the concepts of immersion and presence. Immersion refers
to being immersed in a virtual world, a phenomenon that can be objectively measured by
technical features and their ability to influence human perception through various stim-
uli [DS19; SW97]. Presence describes the subjective experience of perceiving a virtual
world as real [Sl03]. This state is favored by a high level of immersion [DS19]. In this study,
VR is referred to as immersive VR experienced through an HMD.

2.1 Learning in VR

As described in the introduction, there are many reasons why learning in VR can be use-
ful [Ka17]. VR as a medium brings opportunities for engagement, self-regulation, and
motivation. At the same time, however, there are cognitive factors involved in immersive
learning that can sometimes hinder learning [MP21]. Information can be presented in vari-
ous ways and different levels of realism and abstraction in VR. These characteristics present
a design challenge: focus on realism and experience, or focus on information access and
clarity [Su19].

The HMD used for VR offers the opportunity to experience different modalities: visual,
auditory, and haptic with the use of controllers. The modality effect states that presenting
complementary audio + visual information can support learning, as information is processed
in two separate representational formats within the cognitive system [CP91]. In VR however,
there were reversed modality effects observed [AS23; Ba20]. This means visual (image +
text) information outperformed audiovisual (image + speech) information, which might be
contributed to the highly stimulating environment of a VR application.
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2.2 Embodied Conversational Agents

Information in VR can also be transported using an Embodied Conversational Agent (ECA).
They are virtual agents that can be used in immersive and non-immersive media. These agents
are embodied in their environment, i.e., they have a visual representation with physicality and
are not just chatbots, pure voice output, or non-animated objects. In VR, ECAs can increase
the social presence [Le06; LSB25], giving the users the sense of talking to another social
being. Examples for using ECAs in VR applications are given by Kán; Rumpelnik; Kaufmann
[KRK23] or Moore et al. [Mo22] to train socially difficult situations, or by Dai et al. [Da24]
to educate students learning to become teachers. In learning scenarios, ECAs appear as
pedagogical agents which can provide a higher learning quality and motivation [Ma14] due
to the social agency theory, which is described in section 2.3.

There are no clear findings regarding the occurrence of ECAs and their influence. A study
by Reinhardt; Hillen; Wolf [RHW20] found that a humanoid agent was favored by their
participants. A different conclusion was drawn by Wang; Smith; Ruiz [WSR19], where a
miniature version of the agent was favored opposed to one in life-size. A thematically fitting
ECA can enhance the UX [SBS19] while Steynberg; van Biljon; van der Merwe [SBM24]
recommend using a friendly stylized agent for learning environments in VR.

2.3 Social Agency Theory

A fundamental observation derived from social agency theory is that learners feel socially
isolated when learning with multimedia, which reduces their motivational commitment.
Using social cues, such as those generated by pedagogical agents, can counteract this.
The theory states that learners respond to social cues in learning materials, such as a
personal address, natural voice, or visible teacher presence, with a social response. This
social perception increases the willingness of learners to actively engage with the learning
content, leading to deeper cognitive processing of what has been learned [Ma14]. A personal
and conversational style can enhance learning outcomes by mimicking person-to-person
communication. Research shows that better learning outcomes could be achieved through
dialogue-based learning than with statically presented text [Ma04; MDM03; MM00], which
could, for example, be achieved using LLM. However, the data from previous studies is
inconsistent. While embodiment can be beneficial, it can also act as a distractor [At02;
SAG13]).

2.4 LLMs in XR

LLMs offer the ability to communicate in natural language [Na25]. They can also call
functions and provide the appropriate arguments. This makes them a powerful tool in VR,
as the presented environment can be manipulated through natural language. In education,
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LLMs offer many possibilities: they can act as tutors, summarize information, and adapt
learning materials [Ba24; Ga23a].

Recent studies have integrated LLMs into VR learning environments. One approach involves
the use of ECAs. For instance, Garcia-Pi et al. [Ga23b] integrated LLM-based conversations
into a museum application, enabling users to interact with exhibited objects. Compared
to a humanoid agent, the participants liked the talking objects the most. Zhu et al. [Zh23]
compared the retention from dialogues with an LLM in three different visual representations,
showing that the conversation with a humanoid agent led to a higher recall. The dialogue
lasted longer than in a conversation with no visual representation or a representation of an
object. Another approach to integrate LLMs into XR is provided by Skyba; Pfeiffer [SP24]
who used an LLM to enable users in VR to manipulate the scene using natural language,
for example, to move their avatar or another object.

3 Formative Analysis

As part of a user-centered design process [DI20] a context analysis and a user analysis were
carried out. The user-centered design process focuses on the development of an application
around the user and the context to aim for high usability and high UX [DI20]. For that, it
must be clear in which context the application is used and what the requirements of the
potential users are. These analyses combined with design principles from past studies form
the basis for the hypotheses.

3.1 Context Analysis

The LLM-based agent is integrated in an existing learning application. This learning ap-
plication provides an engine training course for the LEAP-1A aircraft engine (see Fig. 2).
The training is intended for apprentices training to become an aircraft engine mechanic.
Since aircraft engine models are designed very differently, specific courses are required to
learn about their specifics. In this training course, participants will become familiar with the
location of the components. Participants will learn basic facts: what the components look
like, what they are called, and where they are located. The stakeholders include potential
users, apprentices, their instructors, and the application developers.

3.2 Stakeholder interviews

Five stakeholder interviews were conducted to collect the requirements, ideas, and concerns
of potential users and other stakeholders. The participants were three aircraft engine ap-
prentices and two VR developers. Despite the initial plans, it was not possible to interview
an instructor due to organisational constraints. The interviews were semi-structured to
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Fig. 2: 3D model of the LEAP-1A engine

facilitate in-depth questioning. They were conducted in a convergent style, enabling ideas
and sketches from previous interviews to be discussed and developed further in later ones.
To provide participants with a basis for discussion, the existing version of the engine training
application was demonstrated during the interviews. The participants were then interviewed,
with the main topics being the appearance and functionality of the LLM-based agent. Each
interview resulted in a set of digital post-its and a sketch. All interviews were conducted in
German. After analyzing the results, by grouping the notes and comparing the sketches, the
main insights from the interviews are the following:

• Three out of five participants wanted an embodied representation; the remaining two
wanted a non-embodied one.

• There were heterogeneous ideas about the presentation modality. However, none of
the participants wanted an audio-only presentation of the learning information.

• Three roles were identified: tutor, motivator, and organizer.

• The main concern is that the LLM-based agent representing a teacher might provide
incorrect information.

These results show that discrepancies are caused by two factors: embodied or non-embodied
representation and the modality of the information presented. The identified roles and the
sketches provided served as a guide for further development.
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Fig. 3: 2×2 factorial design

4 Prototype and Experimental Design

To test our hypothesis, a fully functional prototype was developed using Unity 3D and the
Meta Quest 3. We implemented a 2×2 factorial design, manipulating the LLM-based agent’s
interface and the output modality (visual vs. audiovisual)(see Fig. 3). Participants were
immersed in a virtual aircraft-hangar modeled after those found at Lufthansa Technik sites.
An engine model is positioned in the middle. Users can teleport to four teleportation points
surrounding it (see Fig. 1), as well as roll the engine to reach each point.

4.1 Interface

One of the manipulated factors is the LLM-based agent’s interface. Only the visuals change,
while the rest of the scene and the underlying LLM remain unchanged. Specifically, we
distinguish between two types of conversational agents:

• An Embodied: represented by a drone with expressive animations and spatial presence
in the virtual environment (Drone).

• A Non-embodied: displayed as a floating chat panel without a physical body in the
3D space (Panel).

The embodied design was selected as a Drone with engines to match the application’s
theme, as the results by Schmidt; Bruder; Steinicke [SBS19] and Garcia-Pi et al. [Ga23b]
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Fig. 4: Drone expressions (left to right: talking, processing, moving, idle)

suggested. The Drone has an idle animation in which it hovers in place. It can either fly next
to the current component or be placed freely within the virtual room by the user. It has four
different expressions: talking, processing, moving and idle (see Fig. 4) while it always faces
the user and maintains eye contact. Text is presented as a speech bubble above.

The non-embodied representation is designed as a floating panel that includes a chat window
displaying interactions between the user and the LLM. These interactions are presented
alongside a small drone icon, indicating to the user that all responses originate from the
same entity. Below the chat window are animations that indicate to the user whether the
agent is on standby, processing, or talking. Similar to the Drone, the Panel appears next to
the current component and can be placed anywhere on the screen.

4.2 Modality

The second manipulated factor is the agent’s output modality. We distinguish between two
conditions based on how information is delivered:

• visual: The agent’s responses are presented solely as written text.

• audiovisual: The written text is additionally read aloud using a text-to-speech (TTS)
system.

The input remains the same in all conditions: speech via a push-to-talk mechanism.

4.3 Functionality

The three roles identified in the interviews—Tutor, Motivator, and Organizer—were the
basis for developing the functionality. The Tutor role presents information, and both the
Tutor and Motivator roles actively involve the user. The Organizer role is supposed to help
the user to understand the functionality and to navigate the scene. Two modes were designed
to facilitate learning: explanation mode and query mode. In explanation mode, information
is presented by highlighting components and providing a matching description by the LLM.
Users can ask questions about the components or request memory aids. In query mode, the
agent highlights a component and asks the user to provide the correct name and description.

242 Veronika Simmering, Thies Pfeiffer, Martin Christof Kindsmüller



In this mode, the user had to be active and speak. When starting the training, a database
containing the component names and their official descriptions from the training manual
was sent as a string in the first prompt. This method was used because the database was
small and to ensure the LLM provided correct information. The initial prompt also stated
that the LLM should act as a friendly tutor and only provide the given information without
revealing the underlying processes to maintain immersion. GPT-4o provided TTS, STT, and
text completion functionality without finetuning. There are four functions that the LLM
could call independently:

• save the user’s name,

• evaluate the user’s answer to a question,

• highlight a specific component,

• show or hide a specific component-group.

5 Method

Quantitative research was conducted with a sample of 21 participants. A within-subject
design experiment was conducted, presenting four different combinations to each participant:
Drone + AV, Drone + V, Panel + AV, and Panel + V (see Fig. 3).

5.1 Instruments

The dependent variables are UX and retention. UX is measured with the German version of
the two seven-point rating scales Efficiency (pragmatic quality) and Stimulation (hedonic
quality) from the User Experience Questionnaire (UEQ+ [ST19]). For an additional overall
assessment of the application, the scale’s Response Quality and Usefulness were selected.
Furthermore, questions were asked about the favored condition and about different func-
tionalities of the agent. Retention was measured with a pre- and a post-test. In the pre-test,
component descriptions were presented, and the correct component had to be chosen by
the participant. Unknown components were collected until they counted eight, so that in
each condition two components could be learned. In the post-test, the same procedure in a
randomized order was given. All questionnaires as well as pre- and post-tests were presented
inside the virtual environment to save time and to not interrupt the experience.

5.2 Participants

The evaluation involved 21 participants (1 female and 20 male). Their ages ranged from 19
to 50 years, with a median age of 27.9 years. The participants were drawn from the mechan-
ical, electronics, and IT training areas, comprising thirteen engine mechanics apprentices,
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two engine mechanics employees, two electronics apprentices, and four IT apprentices.
Participants were recruited through teachers and direct contact at the Lufthansa Technik
premises. Participation was voluntary, and participants had varying levels of VR experience.

5.3 Procedure

Fig. 5: Procedure for each participant

The evaluation began with a welcome, the collection of demographic data, and the presenta-
tion of a consent form. In line with the industry partner’s specifications, participants were
informed about the study and that all data would be anonymized. The participants were then
given the VR headset and started with a tutorial that presented all the main functions. Next,
they completed the pre-test, followed by the different learning modes in the four conditions.
After that, they were given a UX questionnaire (see Fig. 5). The order of the presented
scenarios was counterbalanced in such a way that the interface presentations were grouped,
but the order of the different modalities conditions and the order of the interface conditions
were randomized. After the learning was completed, the post-test was administered, followed
by further questionnaires.

6 Results

The VR sessions took between 20 and 75 minutes with a mean of 37 minutes. Learning
success was calculated using the post-test. Each person completed two component tasks in
every experimental condition; therefore, for each task, we have a value of either 0 or 1. One
person completed only one component in every condition due to incorrect settings. The
mean value was then calculated to determine the retention rate. To evaluate the questionnaire
scale’s Efficiency and Stimulation, ranging from zero to six, a UX-Score was calculated by
adding up the score ratings UX8 = � 5 5 8284=2H8 + (C8<D;0C8>=8 and normalizing them.

ÛX8 =
UX8 − min 9

(
UX 9

)
max 9

(
UX 9

)
− min 9

(
UX 9

) (1)
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To analyze the main effects of Interface and Modality on UX, the four experimental condi-
tions were grouped accordingly.

• Interface: Drone (Drone AV and Drone V) and Panel (Panel AV and Panel V)

• Modality: Audiovisual (Drone AV and Panel AV) and visual (Drone V and Panel V)

The Figures in the following sections show the mean value (Retention Rate or UX-Score)
for each condition, with the width of each bar indicating the value. The standard deviation
is also shown.

6.1 Learning

Fig. 6 shows the distribution of the retention rate by Interface and Modality. Contrary to
hypothesis H1, it is clear that the retention rate of the participants in the Panel condition
(mean 0.64) is higher than in the Drone condition (mean 0.51). In the case of modalities, on

Fig. 6: Retention Rate (0-1) by Interface and Modality

the other hand, there are no clear differences. The results of the individual test-conditions
are shown in Fig. 7. Drone AV has the lowest mean value with 0.5. Drone V comes second
and has a mean value of 0.52. Panel AV and Panel V are equal and have the highest mean
score of 0.64. For all conditions, there is a very high standard deviation between 0.37 and
0.42.

6.2 UX

Fig. 8 shows the UX-Score by interface and modality. The Panel Interface was rated on
average at 0.74, which is higher than the 0.70 average rating of the Drone Interface. This
finding invalidates hypothesis H2, which predicted a higher UX for the Drone conditions.
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Fig. 7: Retention Rate (0-1) for conditions

The standard deviation of 0.20 for the Drone conditions is greater than that of the Panel
conditions, which is 0.13. The audiovisual conditions received a mean rating of 0.77, which
was higher than the visual conditions, which received a mean rating of 0.66. Fig. 9 illustrates

Fig. 8: UX-Scores (0-1) by Interface and Modality

how the UX scales are distributed across the individual conditions. With a mean value of
0.78, the Drone AV condition has the highest UX-Score. The standard deviation is 0.24. The
Panel AV variant follows, with a mean value of 0.77 and a standard deviation of 0.13. The
Panel V condition has a mean score of 0.72, while the Drone V condition has a mean score
of 0.63 and the highest standard deviation of 0.26. Taking a closer look at the individual
scales (see Fig. 10 and Fig. 11) reveals that they were rated differently in terms of Efficiency
and Stimulation. In the Efficiency scale, the mean values cluster with a rating around three.
Drone AV has the highest mean value rating, at 3.31. The Drone V condition has the largest
standard deviation at 0.63. On the Stimulation scale, the differences between the conditions
are greater, and the ratings are higher than on the Efficiency scale. Panel AV has the highest
mean value of 5.19, while Drone V has the lowest value of 4.05. Once again, conditions
involving Drone have higher standard deviations (1.4 and 1.74) than conditions involving
UI.
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Fig. 9: UX-Scores (0-1) for conditions

Fig. 10: Efficiency rating (0-6) for conditions

Fig. 11: Stimulation rating (0-6) for conditions

6.3 Testing the hypothesis

A two-way repeated measures ANOVA was conducted for both dependent variables. The
results of the hypothesis tests are presented in Tab. 2.

For retention, the analysis revealed a significant main effect of Interface (� (1, 20) = 4.959,
? = 0.038, [2

? = 0.199), but no effect of Modality (� (1, 20) = 0.026, ? = 0.874, [2
? =

0.001). Thus hypothesis H3 could not be supported. Examining the descriptive statistics,
retention was higher in the Panel condition than in the Drone condition, indicating that
although hypothesis H1 was not supported, the Panel interface exerted a significant positive
influence on learning outcomes. Since Retention was measured on an ordinal scale (0, 0.5,
1), the effect of Interface was additionally checked using a Wilcoxon signed-rank test. This
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test confirmed the ANOVA result, showing that Panel retention scores were significantly
higher than Drone scores. No interaction effects were found (� (1, 20) = 0.033, ? = 0.858,
[2
? = 0.002).

For UX, the ANOVA showed no significant main effect on Interface (� (1, 20) = 1.057,
? = 0.316, [2

? = 0.050), but a significant main effect of Modality (� (1, 20) = 14.143,
? = 0.001, [2

? = 0.414). This indicates that audiovisual output improved UX compared to
visual conditions. Since there were no significant interaction effects found (� (1, 20) = 1.926,
? = 0.180, [2

? = 0.088), hypothesis H4 could not be supported.

Hypothesis Dependent
Variable

Effect Tested ?-value
(ANOVA)

Result

H1: RetentionEmbodied > RetentionNon-embodied Retention Interface 0.038 not supported

H2: UXEmbodied > UXNon-embodied UX Interface 0.316 not supported

H3: Retentionvisual > Retentionaudiovisual Retention Modality 0.874 not supported

H4: UXEmbodied audiovisual > UXEmbodied visual UX Interface ×
Modality

0.180 not supported

Tab. 2: Summary of hypotheses and ANOVA results

6.4 Further questions and analysis

As can be seen in Fig. 12, the response quality was rated lower with an average rating of
2.99 (standard deviation 0.25) than the usefulness of the application with an average rating
of 5.03 (standard deviation 0.61). 15 out of 21 participants preferred the condition Drone

Fig. 12: Ratings (0-6) for Response Quality and Usefulness

AV. 4 participants preferred the Panel AV condition and one participant preferred the Panel
V condition. Furthermore, it was investigated whether the participants’ preference for a test
condition coincided with the condition in which they actually performed better. In general,
only one-third of the participants favored the condition in which they performed best. The
remaining participants did not show an interpretable correlation between their preference and
higher learning success, that is, although they preferred a certain form of presentation (Drone
or Panel), they did not achieve the best results with it. During the experiment, participants
were observed to interact with the LLM-based agent in very different ways. While some
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answered all questions and asked the LLM-based agent for further information, others
avoided speaking, which led to considerable variation in the duration of the experiment. It
was also observed that the LLM-based agent did not provide false information, despite this
being a concern raised in the formative interviews. Although it had a limited database, it
responded to further questions by stating its lack of knowledge.

Furthermore, to complement the students’ evaluation, five teachers were interviewed. The
participants were first presented with the application and subsequently queried on their
understanding of it. All respondents indicated that they would employ an application of this
nature in their pedagogical practice.

7 Discussion

The research results were unexpected and opened new perspectives on the questions. The
data aligned with the original expectations solely for hypothesis H4. Contrary to expectations,
learning outcomes were significantly better with the non-embodied Panel than with the
embodied Drone, disproving hypothesis H1. For hypothesis H3, no significant differences
were found and no clear trend emerged. Hypothesis H2 was similarly not confirmed. However,
an examination of the individual UX scales reveals a discernible trend. Specifically, the
Stimulation scale elicited higher ratings for the audio conditions than for the conditions
without audio. The Efficiency scale did not reveal significant disparities, suggesting that
independent variables exerted minimal influence on the outcome. The presence of latency
or other unaccounted factors may have also influenced the Efficiency ratings. Given the lack
of support for any of the hypotheses by the data, a thorough examination of the reasons for
these outcomes is imperative.

7.1 Interface

No effect could be determined in relation to the social agency theory, as there was no
improvement in learning success with the embodied design compared to the non-embodied
design. There could be several reasons for this finding. Firstly, the Drone display, with its
animations, could have been too distracting. In applications implementing an ECA, users
tend to look at it frequently [Lo09; SAG13]. In this case, the balance between motivation
and distraction, as described by Moreno [Mo05] and Dehn; Van Mulken [DV00], may not
have been optimal. Another explanation could be the level of abstraction and the lack of
facial expressions of the embodied design. There may have been too few social cues for the
social agency theory to be applicable here. The Drone did not employ gestures or non-verbal
communication, nor did it utilize synchronized speaking animations. The aforementioned
factors have been shown to be associated with social presence and successful learning [Ma14;
PMM21]. Further studies could use eye tracking and cognitive load measurements to
investigate test subjects’ attention and cognitive load in more detail. It would also be useful
to measure social presence and learning motivation using validated questionnaires.
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The non-embodied design leveraged its chat window to present additional information. It is
posited that the participants’ ability to reread the entire conversation may have facilitated
a more effective processing of the information. This could have potentially contributed to
improved learning outcomes.

Despite the selection of the Drone as the optimal design, no substantial disparities in UX
were identified when measured by questionnaires. The discrepancy in the UX-Score is
negligible, with the non-embodied Panel representation demonstrating a slight advantage.
This could be indicative of the Drone being perceived as more agreeable, though this is
only one component of UX. UX is a holistic concept; however, only the Efficiency and
Stimulation scales were included in this study. The hypothesis that a preference for the
Drone design would be evident in another scale, such as the attractiveness scale, is plausible.
Subsequent studies should analyze various aspects of UX in greater detail using additional
scales.

7.2 Modality

A clearer difference in UX evaluation was observed for output modalities. Audio output has
a particular influence on Stimulation. Opinions on the variant without audio varied greatly.
In contrast, no correlation was found between output modality and learning success. No
modality effect was found, nor was a reverse modality effect observed, as reported by Albus;
Seufert [AS23] and Baceviciute et al. [Ba20]. A salient distinction between the present
study and its predecessors pertains to the availability of visual outputs under all conditions.
Consequently, participants were capable of comprehending information in the audiovisual
condition. This may have counteracted a reverse modality effect. Although the assumption
that an embodied design should include audio output, otherwise resulting in a poor UX,
could not be empirically confirmed, the data suggests this.

7.3 Limitations

The quantitative study was characterized by a modest sample size of 21 participants, with a
notable absence of female representation among the participants, resulting in a group that
was imbalanced. In addition, a total of two components were acquired in each condition.
This approach can potentially lead to outcomes that are not predictable or consistent. It was
reported by some participants that the description, even when considered to be derived from
the official training manual, was characterized by ambiguity. Furthermore, some participants
reported feelings of discomfort due to the spatial configuration of the study’s setting. The
influence of these factors on the results is a subject that merits further investigation.
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7.4 Design Principles

This led us to develop a set of design principles derived from the findings of the evaluation.
The following list contains the items in question:

• Application-dependent visualization: The non-embodied design as a floating panel
with chat history should be used for learning modes. Embodied visualization should
be used for interactive or supporting modes, such as tutorial modes. Ideally, the choice
of display should be left to the user.

• Multimodality in the output: The use of audio should be optional. It is not decisive
for learning success, but it can improve the UX.

• Information content of the LLM-based agent: The information content of the
LLM-based agent should be increased to enhance its usefulness.

• Cooperation with trainers: In order to improve the quality of the learning content,
trainers should be involved in its development.

• Tutorial: To improve engagement, it is important that all users feel comfortable with
the system. Therefore, an extensive tutorial should be provided.

These recommendations can serve as an initial point of reference for designing LLM-based
agents for VR learning applications. However, they should be validated and expanded upon
in future studies. In particular, there is a need for further investigation into the cognitive
effects, as well as the impact on social presence and motivation, of design variants.

7.5 Future research

Future research endeavors present numerous opportunities to further explore this topic. It
would be a worthwhile endeavor to experiment with alternative design choices. For instance,
one could opt for a humanoid agent, incorporate a wider range of facial expressions, refine
the prompts, enhance the autonomy of the agent, or develop an internal model of the user.
In terms of methodological decisions, it would be beneficial to measure eye movement,
cognitive load, and social presence. Additionally, it would be beneficial to assess the potential
impact of the novelty effect on the outcomes of long-term research endeavors. In order to
enhance the robustness of the research, it would be advisable to measure design choices
individually.
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