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Comparing Fiducial Marker Tracking Across Cameras in
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Felix Krumstroh ®', Andrés Eisenmann ®', Jannik Franssen ®!, Moritz Rindermann ®',

and Thies Pfeiffer ®!

Physical Testing Rig
(Real Camera)

G

Marker Detection |
+
- i i Image Generation Pose Estimation Comparison of Results
Virtual Testing Rig
(Blender Scene) Using ArUco and BART

Fig. 1: Schematic overview of the hybrid evaluation pipeline for sim-to-real comparison and algorithm
benchmarking

Abstract: Robust object tracking is a foundational technology for augmented and virtual reality
(AR/VR) systems. While many benchmarking efforts rely solely on simulated environments, these
often lack real-world fidelity, limiting practical insights. To bridge this gap, we propose a hybrid
evaluation approach, combining a physical test rig—constructed from aluminum extrusion frames and
ArUco markers—with a digital twin created in Blender. Our approach facilitates direct sim-to-real
comparisons of fiducial marker tracking performance. We benchmark the widely used OpenCV ArUco
(Augmented Reality library from the University of Cordoba) against a custom-optimized tracking
approach, BART (Bielefeld Augmented Reality Tracker), a modern performance-optimized alternative,
to evaluate whether tracking limitations stem from the ArUco implementation itself or are inherent to
fiducial marker tracking in general. Our evaluation focuses on detection accuracy and pose estimation
performance. The results offer practical insight into the differences between tracking performance in
real and simulated environments.

Keywords: Object Tracking, Augmented Reality (AR), ArUco, Fiducial Marker Tracking, Bench-
marking
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1 Introduction

Marker-based tracking is a foundational component in Extended Reality (XR) applica-
tions, particularly for spatial alignment between physical environments and their digital
twins [C620; So23; Zh25]. It enables XR systems to anchor virtual content in real-world
space, supporting use cases such as step-by-step maintenance assistance, part localization,
and live system visualization. However, assessing the reliability of marker tracking remains
challenging, as it typically requires extensive real-world testing under diverse and often un-
predictable environmental conditions; ranging from variable lighting and reflective surfaces
to differences in hardware like headsets and webcams [Me20; Su24].

In industrial contexts, recreating real-world conditions across different hardware config-
urations can be both time-consuming and costly, particularly for large-scale spaces such
as factory floors or construction sites [Ma21]. This motivates the use of simulation-based
testing as a low-risk, cost-effective pre-validation step. However, such simulations are often
idealized—featuring simplified lighting, perfect camera parameters, and noise-free ren-
dering, which may lead to overly optimistic assessments of tracking performance [B114;
WSB23].

This paper presents a hybrid evaluation approach that combines a physical test rig with a
digital twin created in Blender to assess both simulation fidelity and algorithmic performance
in fiducial marker tracking. We benchmark the widely used OpenCV ArUco implementation
against BART (Bielefeld Augmented Reality Tracker), a modern alternative, to distinguish
between implementation-specific constraints and fundamental detection challenges. Fig. 1
illustrates our workflow, showing how data from both physical and virtual domains feed
into a unified analysis process for direct comparison across multiple camera systems and
tracking algorithms.

2 Related Work

Prior research of fiducial marker tracking has largely focused on algorithmic performance
improvements and physical setup optimizations [Be24; KYW18; RMM18; RMM20]. Previ-
ous studies, such as one by Merino et al. [Me20], have evaluated marker detection under
different lighting conditions, noise models, and distances, showing that detection accuracy
is highly sensitive to external conditions such as glare, marker degradation, or motion blur.
Additionally, several works explore aspects such as adaptive thresholding, sub-pixel corner
refinement, and improved dictionary design to increase robustness [Gal4; Gal5].

However, few works have systematically compared real-world tracking performance with
simulated equivalents [DRP15; SPS24]. While most benchmarking efforts focus on envi-
ronmental factors affecting tracking performance, fewer studies systematically compare
different algorithmic approaches under identical conditions. This gap is particularly relevant
given the dominance of OpenCV’s ArUco implementation in research and development.
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2.1 Simulation-Based Evaluation

Previous evaluations focus either on physical testing or on fully synthetic data generation,
without concern for how well the simulation reflects actual detection behavior. Synthetic
testing approaches have explored tools such as Unity, Unreal Engine, and Blender for
prototyping. Since these programs are developed primarily for real-time rendering, visual
effects, and content creation, these environments tend to lack the ability to realistically
simulate real-world optical effects such as lens distortion or sensor noise profiles, which are
particularly relevant for devices like the Meta Quest 3 [Ba24].

Diekmann; Renner; Pfeiffer [DRP15] presented a benchmarking framework based on syn-
thetically generated video sequences to evaluate marker tracking algorithms under controlled,
dynamic conditions. While effective for assessing algorithmic robustness, their approach
did not prioritize high-fidelity environmental modeling, nor did it establish the external
validity of simulated results with respect to real-world performance. Notably, their work
included comparisons between tracking approaches such as BART and ArUco, which are
also examined in our study. In a related line of research, Sivov; Poroykov; Shmatko [SPS24]
evaluated pose estimation accuracy by comparing physical and Unity-based virtual envi-
ronments. Although positional estimates aligned closely, significant depth discrepancies
were observed in the real-world tests, primarily due to unmodeled sensor noise and optical
distortions. These findings underscore the need to assess not only simulation fidelity but also
the predictive validity of synthetic results across varying camera systems and acquisition
conditions.

In contrast, our approach emphasizes simulation validity of simulation results how well
outcomes from a virtual replica correspond to real-world tracking performance. Rather than
treating synthetic data as generic input, we replicate physical measurements, lighting, and
camera behavior within the virtual scene.

2.2 Detection Optimizations

Various enhancements to marker detection algorithms have been proposed over the years.
The use of Kalman filters has been explored to stabilize detection over time, particularly
under jittery or occluded conditions. An optimization also incorporated in approaches such
as BART, a marker tracking system developed by the University of Bielefeld that prioritizes
real-time processing for mobile and XR platforms [KYW18]. Recent work on dictionary
optimization by Garrido-Jurado et al. [Gal5] introduced automated methods for generating
marker dictionaries with maximal inter-marker distance, reducing detection ambiguity and
improving robustness; particularly in challenging conditions. This has informed newer
ArUco dictionaries’ design such as 5x5_1000 used in this study.
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Fig. 2: Image of the physical (left) and simulated (right) setup.

3 Methodology

To compare the real and virtual experimental environments, we implemented the following
approach:

3.1

Testing environments

Physical Testing Rig: To ensure reliable and accurate real-world camera testing, we
built a precise physical rig using aluminum extrusion profiles. This material provides
a cost-effective balance of stability, modularity, and ease of assembly. The camera
was mounted on a central vertical profile, with the ability to adjust its height and tilt
angle. We conducted detections at 10 cm distance increments, both with the camera
facing straight ahead and tilted 45° downward. These test configurations reflect a
wide range of typical marker viewing conditions in real-world applications. All values
were verified using digital protractors and measurement scales. Subsequent reviewing
of the setup demonstrated an error tolerance below 1 mm.

Virtual recreation: The virtual model replicates the physical geometry, including the
camera position, marker layout, and environmental parameters such as lighting and
resolution. This allows us to test identical scenarios under idealized and controlled
conditions, ensuring consistency across multiple runs. To allow for realistic lighting
and adjustable camera parameters, we used the program Blender. This software also
allows for Python scripting, which we used to generate all digital counterparts of the
real-world measurement images.
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Both environments were calibrated using a ChArUco [Op] board, such that the camera data
was consistent across all tests. We used 3D printed ArUco markers made of PLA filament
in the physical testing rig due to the material’s strength compared to paper, as well as its
reflective properties [Do22].

Fig. 1 provides an overview of the hybrid evaluation workflow, illustrating the parallel
structure of the real and simulated environments and their integration into a shared analysis
pipeline. Fig. 2 shows both real and simulated testing environments, where the real setup
(left) has the Meta Quest 3 mounted and the virtual scene (right) is left blank.

3.2 Testing parameters

Cameras We selected three representative camera systems commonly used in con-
sumer and XR development contexts to evaluate marker detection performance under
both consumer-grade and industrial conditions. While the setup can accommodate a broader
range of sensors, these devices were chosen based on practical relevance, image quality, and
their distinct optical characteristics.

. Meta Quest 3: A widely available XR headset with integrated pass-through capa-
bilities. Due to its unusual camera feed characteristics, such as non-standard aspect
ratio, stitched image regions, distortion, and internal pre-processing, it represents a
valuable test for mobile marker tracking systems.
The camera records in a resolution of 2064 x 2208 with a field of view of ca. 100°
FOV and a focal length of ca. 20mm.

. Logitech MX Brio: A high-resolution RGB webcam capable of capturing 4K video,
representing a more traditional desktop vision system. Unlike the Quest, it does not
apply significant internal image processing, making it suitable as a baseline for high-
fidelity detection and an interesting contrast to mobile XR devices.

The camera records in a resolution of 3840 x 2160 with a field of view of ca. 90°
FOV and a focal length of ca. 4.7mm.

. HP 325 FHD: A low-end RGB webcam capable of capturing 1080p video. This
represents a more affordable, flexible choice of webcam for industrial applications.
With lower resolution, a reduced field of view, and lower image fidelity, it was selected
as a contrast to the Logitech Brio.
This camera records in a resolution of 1920 x 1080 with a field of view of ca. 66°
FOV and a focal length of ca. 2.2mm.

To replicate the cameras in the virtual scene, each device was modeled in Blender as a
virtual camera object. The replication process included setting the focal length, sensor size,
resolution, and aspect ratio according to the manufacturer specifications. Where available,
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calibration parameters were used to reproduce intrinsic properties. Optical distortion was vi-
sually approximated by applying Blender’s compositing Lens Distortion node, allowing
a close alignment between the simulated and real-world captures.

Markers To replicate realistic deployment conditions, marker selection was performed
without cherry-picking. All markers were used as-is, regardless of individual detection
performance, to reflect a typical application workflow. Markers were drawn from two ArUco
dictionaries: 5x5_1000 and ORIGINAL. Both use a 5x5 bit grid but differ in optimization.
The 5x5_1000 dictionary, generated using mixed-integer linear programming [Gal5], max-
imizes inter-marker Hamming distances to reduce false positives. In contrast, the ORIGINAL
dictionary lacks such optimization, making it more prone to incorrect detections under
challenging conditions. Including both allows comparison of legacy and modern dictionaries
and ensures compatibility with detection pipelines limited to ORIGINAL.

Markers were printed at 10 cm X 10 cm, with a 7cm X 7 cm coded area and a 1.5 cm white
border for contrast. Each 5 x 5 bit grid had 1.cm? bits, ensuring reliable detection over
various distances and supporting sub-pixel corner refinement within the resolution limits of
the cameras used.

Tracking algorithms To evaluate whether the ArUco detection pipeline represents a bot-
tleneck in tracking performance, we benchmarked two different tracking systems: a standard
ArUco-based implementation and a proprietary system named BART. This comparison
assesses whether limitations in detection are inherent to ArUco or attributable to general
marker tracking challenges.

BART Implementation To evaluate the proprietary BART tracking system against the
current ArUco implementation, we updated its dependencies and processed the same gener-
ated dataset. BART employs a proprietary, time-based detection strategy designed to address
occlusion, jitter, and dynamic detection challenges. Each frame is processed independently:
once markers are detected, BART extracts their pose (position and orientation), records
timing data, and visualizes marker IDs and body projections via OpenCV.

Performance Optimizations in BART BART outperforms standard OpenCV ArUco
by incorporating several architectural optimizations that balance real-time efficiency with
detection accuracy. Time-bounded processing ensures consistent frame rates by terminating
detections exceeding preset thresholds. When markers persist across frames, the search
space is constrained to ROIs near prior detections, reducing computational load.

A multi-scale detection strategy processes downsampled frames first, escalating to higher
resolutions only if needed. Parallel full-frame searches are handled asynchronously via Boost
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threading, preserving the responsiveness of the main detection loop. Adaptive threshold-
ing—using both mean and Otsu’s methods [Ga22; Yol5]—enhances marker segmentation
under varying lighting. Marker decoding uses lightweight bit matrix comparisons with
minimal Hamming distance checks to reduce processing overhead.

Many aforementioned optimizations align conceptually with the acceleration strategies
of Romero-Ramirez; Muiloz-Salinas; Medina-Carnicer [RMM 18], which improve square
fiducial marker detection without sacrificing accuracy.

4 Results

Our findings give insight into detection performances from all three cameras across varying
camera and marker positions.

4.1 Marker Detection

Fig. 3 shows the marker detection results across different camera heights and marker dis-
tances for all three tested cameras. The left column presents detections from the real-world
environment, while the right column shows detections in the virtual simulation. The
heatmaps visualize the effective detection areas for each camera. In general, similar de-
tection patterns are visible between real and simulated tests, indicating that the virtual
environment provides a comparable—but not identical—representation of real-world behav-
ior.

Tab. 1 summarizes the results. The key metric of detection coverage expresses the proportion
of markers detected out of all available markers in the test setup. We calculate detection

: — Detected Markers
coverage using the formula Coverage = wr-rRomberof Markars X 100

This effectively reflects the system’s overall ability to identify markers within our test
environments, rather than the correctness of IDs. On average, both webcams achieved higher
coverage than the Meta Quest 3, which suffered from reduced detection rates at larger
distances and steep angles.

The other metric we used is detection coverage, which measures the number of overlap
between the marker detection in the real world versus its counterpart in the simulated
environment.

Let Dy, denote the number of markers detected in the physical setup, and Dy, the number
detected in the simulated environment under the same conditions.

Precision = Dreal - Dvirtua] x 100
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Fig. 3: Marker detection results across camera heights and marker distances (Meta Quest 3 (a), Logitech

MX Brio (b), HP 325 FHD (c))
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Detection Precision Mean Mean
Camera Coverage (%) ADistance  ARotation

(%o) (cm) (deg)
HP 325 88.76 94 1.81 1.67
Logitech Brio 84.02 91 1.72 1.14
Meta Quest 3 72.41 97 343 441

Tab. 1: Comparison Summary Metrics for Each Camera.

The Meta Quest 3 also showed the strongest discrepancies between real and simulated
performance. Unlike webcams, where deviations can largely be traced to classical optical
factors (e.g., field of view, resolution, or lens distortion), the Quest’s issues seem to be
linked to its internal passthrough image pipeline. Its video feed undergoes some processing,
leading to spatially non-linear warping and stretched or stitched regions in the image. These
effects, noted also in a study conducted by Bailenson et al. [Ba24], impact marker visibility
and degrade pose estimation consistency (see Section 4.2). Because our simulation does
not replicate such device-specific image generation steps, alignment between virtual and
real results is inherently less reliable for the Quest.

By contrast, both webcams exhibited more consistent results between real and simulated
conditions. Since they apply minimal image processing and have relatively low optical
distortion, their detection behavior is primarily influenced by physical characteristics such
as resolution and field of view. For example, the HP webcam’s narrower 66° FOV limited
its coverage at low heights and steep angles, whereas the Logitech Brio webcam benefited
from its higher resolution and wider view. Minor discrepancies in the heatmaps are most
plausibly attributable to small misalignments of the setup during measurement rather than
the inherent behavior of the camera.

4.2 Pose estimation

While analyzing the pose estimation difference between real and virtual results, the Meta
Quest 3’s rotation vector discrepancies, shown in Fig. 4, are particularly pronounced. The
shaded regions in the plot indicate the variability of the measurements across trials, with
wider bands reflecting less stable detection results. This often results from inverted marker
orientations. These are instances where the correct marker ID is detected, but with one or
more components of the rotation vector flipped, which occurs in cases where the pitch of the
marker has a low pitch angle to the camera, which aligns with findings made by Rijlaarsdam;
Zwick; Kuiper [RZK22].

This emphasizes the need for improved calibration and a more accurate simulation of the
Meta Quest’s optical pipeline. The average rotation difference across all distances is also
larger than the rotation vector differences with the webcams, which is likely due to the
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Fig. 4: Average detected rotation vector difference between real and simulated (Meta Quest 3)

unorthodox image generation pipeline and warping effect, which was only approximated in
the virtual camera recreation. In contrast, the pose estimations were observed to be more
similar between real and virtual environments with the two tested webcams. Both rotation
and distance estimations were within small margins of + 1-5 centimeters for the distance
estimation and + 4 degrees of rotation per axis, with similar occasional outliers as observed
with the Meta Quest 3.

4.3 Marker Detection Approaches

Tab. 2 builds on the results presented in Tab. 1 by directly comparing the detection per-
formance of ArUco and BART in all camera systems evaluated, using the same metrics
introduced in Section 4.1. The comparison focuses solely on detection accuracy, as pose
estimation differences remained within narrow margins for most devices, with the exception
of the Meta Quest 3, which exhibited fewer inverted rotation vectors when using BART, as
previously discussed in Section 4.1.

Camera  Algorithm  Coverage (%) Precision (%)

HP 325 ArUco 88.76 94
HP 325 BART 90.11 98
Brio ArUco 84.02 91
Brio BART 87.30 97
Quest3 ArUco 72.41 97
Quest 3 BART 80.15 99

Tab. 2: Comparison of ArUco vs BART across camera systems.
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Although the overall detection coverage is largely comparable between the two algorithms,
BART outperforms ArUco in terms of precision, indicating a notable reduction in false
positives. These improvements are particularly significant on lower end hardware, where
BART’s adaptive thresholding and region-of-interest filtering more effectively suppress
spurious detections. Even in high-quality sensors such as the Logitech Brio, BART maintains
a precision advantage while achieving comparable coverage.

These findings support the view that while hardware characteristics largely constrain over-
all detection performance, algorithmic enhancements can meaningfully compensate for
those limitations. As discussed in Section 6, remaining discrepancies between the real
and simulated results are likely to be attributable to physical setup tolerances and human
measurement error rather than algorithmic performance.

5 Discussion

Our results show that high-fidelity simulations can approximate general trends in marker
visibility and detection zones but consistently overestimate detection performance when
compared to real-world conditions. This overestimation is primarily caused by missing
camera-specific effects in the simulation pipeline, such as lens distortion, sensor noise,
and proprietary image processing steps. While the physical setup’s geometric and lighting
conditions were closely replicated in Blender, the absence of the aforementioned optical
and computational effects limits the simulation’s predictive accuracy.

Pose estimation fidelity further highlights this limitation. Although simulations produced
reasonable geometric alignment for static configurations, rotation and distance estimations
diverged significantly, particularly when device-specific distortions could not be modeled.
Across all tested devices, pose estimation in simulation underperformed compared to real-
world results, especially under off-angle or long-range conditions.

Overall, our digital twin approach proved to be effective for early-stage layout evaluation
and marker placement testing, where relative visibility patterns are the primary concern.
However, it remains insufficient for predicting precise detection rates or robust pose estima-
tion performance across varied hardware. Our findings confirm that real-world validation
remains essential when assessing practical marker tracking system performance.

In summary, virtual environments provide meaningful early-stage evaluation benefits, par-
ticularly for assessing geometric configurations and basic marker visibility. However, simu-
lations are insufficient for final detection performance assessments, especially regarding
device-specific distortions and pose accuracy.
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6 Limitations

While our evaluation approach successfully facilitates early-stage testing, several key limita-
tions constrain its ability to predict real-world tracking performance comprehensively:

Static Scenarios Only: All tests were conducted under controlled, stationary condi-
tions. Real-world XR applications involve dynamic motion, including head movement,
object occlusion, and rapid viewpoint changes. The absence of motion artifacts, such
as rolling shutter effects, motion blur, and temporal filtering, limits the realism of our
simulation results.

Simplified Lighting and Materials: Although virtual lighting was visually approxi-
mated, no photometric calibration or material reflectance modeling was performed.
Missing optical effects—including specular reflections, shadows, and surface tex-
ture variations—reduce the visual realism of markers and surroundings, potentially
influencing detection reliability.

Lack of Physical Camera Emulation: The virtual camera models used in Blender
omit critical real-world effects such as sensor noise, chromatic aberration, rolling
shutter distortions, and proprietary in-camera processing. This is particularly impact-
ful for devices like the Meta Quest 3, whose closed-source image pipeline introduces
non-linear distortions not reproducible in standard 3D modeling software.

Approximate Real-World Calibration: Physical setup parameters (camera positions,
angles, and distances) were measured manually with tolerances under 5 mm. However,
small calibration inaccuracies likely contributed to misalignment between real and
simulated test cases, especially at large distances or shallow angles.

Limited Marker Types: Only two ArUco dictionaries were evaluated (5x5_1000
and ORIGINAL). Testing additional marker designs—including ChArUco boards and
circular markers—could reveal broader insights regarding marker detectability under
varying conditions. Additionally, the markers were selected from amongst the first 20
IDs across both tested dictionaries, which may lead to slightly idealized results, since
lower-index markers typically feature higher inter-marker Hamming distances and
less visual ambiguity than markers assigned higher indices [Gal4].

Limited Validation via Alternative Tracking Approaches: This study only includes
testing with two different fiducial marker tracking approaches (ArUco and BART),
which leads to a lack of validating data for a true comparison between simulated and
real environments. This limitation is extended to the fact that only static scenes were
evaluated, which limits the amount of possible optimization approach comparisons.

In summary, while the virtual environment approximates static visibility performance,
unmodeled optical effects, device-specific processing pipelines, and the exclusion of dynamic
testing limit its predictive validity for real-world AR/VR tracking performance.



Comparing Fiducial Marker Tracking 161

7 Conclusion

Our findings indicate that simulations are highly valuable for early design iterations and for
identifying potential marker visibility issues. However, they cannot fully replace real-world
validation when the goal is accurate detection or precise pose estimation.

In our experiments, simulations consistently tended to overestimate detection performance,
particularly for devices that employ proprietary image processing, such as the Meta Quest
3. Simulations reliably predicted general marker visibility patterns. However, precise pose
estimation and robust detection still depended on physical testing, since our simulations
omitted real camera effects like distortion and sensor noise.

The central takeaway is clear: simulations are best used as a “negative filter.” If a setup fails
in simulation, it will almost certainly fail in practice, but success in simulation alone is not
enough.

Looking ahead, future work should focus on integrating physically accurate camera models,
including distortion profiles and sensor characteristics, and extending the evaluation frame-
work to dynamic scenarios that involve motion blur, jitter, and occlusion. Another promising
direction lies in the use of photogrammetry or LiDAR scans to enable higher-fidelity scene
reconstruction, as well as testing under more diverse and realistic lighting conditions.
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