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Abstract

Eye tracking is applied in very heterogeneous settings, from reading
to immersive virtual reality (VR), using devices ranging from sta-
tionary high-precision to mobile low-power devices. Classification
algorithms, on the other hand, are developed and tested on specific
devices in specific settings. A central question is how algorithms
that have been optimized for a particular scenario (device + setting)
would perform when being applied to a different scenario. In this
paper, we approach the idea of a distance metric, describing the sim-
ilarity between two scenarios. If the distance between two scenarios
is low, the algorithms can be safely adopted between them. The
higher the distance, the weaker the expected performance of the
transferred algorithm. We reflect our ideas on a transfer from a 2D
screen-based eye-tracking scenario to an immersive VR scenario.

CCS Concepts

« Human-centered computing — Interaction techniques; Point-
ing devices; Accessibility technologies.
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1 Introduction

In this paper, we are taking first steps to address a problem that re-
searchers and engineers have when trying to implement gaze-based
interaction or accessibility technologies in non-standard scenarios:
To apply modern, machine-learning (ML)-based algorithms, they
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would need extensive training data. This would be expensive to gen-
erate and sometimes, due to small target populations in particular
in the domain of accessibility, would be difficult to get. Alternatives
are taking a pre-trained algorithm or finding a published dataset of
a similar scenario as a basis for training. However, in both cases, it
is unclear, whether the original scenario is similar enough so that
the performance of the algorithm will be satisfying.

We thus discuss the idea of a decision framework. Such a frame-
work would provide a list of tools helping with the decision, whether
a dataset for a certain scenario could be used for training a classifier
that should later be applied to a different scenario. One first tool of
such a decision framework would be a list of exclusion criteria, that
can be applied and measured to decide, whether a dataset would
be eligible. In a second step, a distance metric could provide an
estimation of the practical difference between two scenarios based
on their characteristic parameters. With such a metric, one can
make an informed selection from available datasets or algorithms
with proven performance in a specific scenario. In follow-up steps,
it might even be possible to develop an estimator which predicts
the performance on a new dataset just based on these parameters.

In our own research, we are facing the described challenges quite
often, as we are targeting real-time interaction in virtual reality
(VR) or mixed reality, thus studying gaze behavior in immersive 3D
environments. Immersive gaze analysis offers insights previously
unattainable in 2D settings and has broadened applications from
psychological studies to consumer analysis [Adhanom et al. 2023].

Most research on gaze analysis, however, is focusing on 2D gaze
tracking, which typically involves fixed user positions and limited
stimuli (static images, videos). This often leads to a simplified data
analysis based on 2D screen coordinates. In contrast, 3D scenarios,
such as VR, introduce dynamic elements where both stimuli and
users move. This expands the field of view and complicates gaze
mapping due to additional spatial dimensions and environmen-
tal changes. User movement in 3D environments adds noise and
variability that differs from the patterns observed in stationary 2D
data [Lamb et al. 2022]. For example, a user following a moving
point in a 2D scenario would result in observable smooth pursuit,
while a moving user observing the same movements in VR would
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result in more complex gaze behavior, often referred to as a combi-
nation of smooth pursuit and vestibulo-ocular reflex (VOR) [Purves
et al. 2015].

Varying scenarios also produce different gaze event distributions,
and machine learning algorithms trained on 2D datasets (without
VOR) may struggle to classify fixations and saccades in 3D datasets
(with VOR). Consequently, established classification algorithms
might underperform on 3D datasets. Researchers and engineers
exploring eye tracking in new scenarios consequently face chal-
lenges in algorithm selection and machine learning applicability.
They must either invest in recording and annotating substantial
data or identify the most suitable existing dataset or algorithm.

In the following, we review related work, identify parameters,
and classify datasets according to these parameters. We then use an
example-based approach to assess the influence of these parameters
on the performance of a machine learning algorithm transferred
from a 2D screen-based scenario to an immersive 3D scenario.
Based on these findings, we conclude with a first estimation on the
relevance of parameters and thus on a first choice set of parameters
for a distance metric between eye tracking datasets.

2 Related Work

First step is the identification of parameters characteristic for a
scenario: The frame rate at which eyes are recorded varies be-
tween devices (e.g. HoloLens 2 [Microsoft 2023]: 30 Hz, Eye Link
1000 Plus [Ltd. [n. d.]]: 2000 Hz). The field of view covered by the
stimuli varies between scenarios (e.g. a computer screen [Griffith
et al. 2021] or VR glasses [Wei et al. 2023]) and can be specified
in angles [Magic Leap [n. d.]], millimeters [Griffith et al. 2021] or
pixels [Wei et al. 2023]. Gaze location events are given in differ-
ent units, from pixels [Agtzidis et al. 2019] over angles [Griffith
et al. 2021] and angular velocities [Kothari et al. 2020] to millime-
ters. Stimuli are covering different dimensions, typically 2D for
screen-based scenarios or 3D for mobile or immersive scenarios.
The distance between users and stimuli can be fixed or dynamic.
The setup for eye tracking sessions can range from fixed chin-rest
positions [Andersson and Larsson 2017] to free head movement
in space [Kothari et al. 2020]. Stimuli can be dots [Andersson
and Larsson 2017], texts, images, videos, complex 3D structures,
animated objects [Kim et al. 2019], or articulated figures. A task
may be given, such as reading, free viewing [Griffith et al. 2021],
or performing an action [Kothari et al. 2020]. The data can have
labels from basic fixations and saccades to such used for biomet-
rics [George and Routray 2016], or of a finer granularity, such as
in the dataset 360_em [Agtzidis et al. 2019]. Table 1 reflects the
diversity of data on the example of six labeled datasets available to
train and test gaze classifiers.

In our own research, we are targeting gaze classification in im-
mersive environments. We thus concentrate on the question of
classifying gaze in 3D scenarios in the following.

Recent research has explored approaches to classify eye move-
ments in 3D eye-tracking datasets, collected particularly in virtual
reality (VR) settings where both stimuli and users are mobile. With
CLRGaze [Bautista and Naval 2021], a novel method for learning
feature vectors of eye movements using contrastive learning was
presented, that can then be used by neural networks to classify
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the eye-tracking data. This approach shows strong potential for
handling diverse and complex datasets, such as those collected
in dynamic 3D VR environments. By leveraging self-supervised
learning, the method reduces the reliance on extensive labeled data
while enabling effective feature representation. However, the re-
search is restricted to eye movements obtained from viewing static
images and the authors already apply several transformations to
homogenize the data without an analysis of the effects of the trans-
formations (downsampling, coordinate system transformations).

Another notable study is that of Agtzidis et al. (2019) [Agtzidis
et al. 2019], who recorded and partially annotated a new dataset of
eye-tracking data in 360-degree videos. They devised a two-step
process for the manual annotation of eye movements, including
fixations and saccades, and implemented an algorithm for the auto-
matic classification of these movements. This study highlights the
need to adapt existing classification methods to the more complex
conditions of 3D environments.

Llanes-Jurade et al. (2020) [Llanes-Jurado et al. 2020] not only
addressed the problem of the complexity of 3D datasets but also
highlight the challenge of identifying the right parameters for the
ML algorithms used to classify those datasets. They propose a
dispersion-threshold identification algorithm capable of handling
eye-tracking data that is recorded while the user is free to move.
Additionally, the authors provide parameters for the algorithm that
achieve optimal fixation detection in a dataset recorded in a VR
environment.

3 Towards a Distance Metric for Eye Tracking
following an Example Case

The distance metric should help to assess the similarity of scenarios
based on parameters. It aims to predict machine learning perfor-
mance when training and application scenarios differ. The metric
should therefore take into account parameter differences and their
weighted influence on event detection. This paper provides initial
indications of the significance of some parameters. Results are pre-
liminary and the weighting and significance of the parameters for
the distance metric may change with further research that includes
more examples of datasets and transformations.

In our example, we are considering the problem of deriving a
working gaze classifier for immersive VR scenarios from an anno-
tated dataset created in a 2D scenario. We approach this by selecting
two available datasets and analyze the process of transferring a
classifier trained on the first to predict outcomes on the latter. In
this stage of the research, we need the second dataset for verifica-
tion, in the end, the metric should allow us to predict the outcome
just based on the parameters of the target scenario. The parameter
values of "Dimension of use" are thus "2D" and "3D VR", respectively.
In order to find out which of the parameters listed in chapter 2 are
decisive in determining whether the dataset is suitable for training
a machine learning model for this use case, "Field of View", "Label"
distribution and the type of "Stimuli" are analyzed in a first step.
The parameter "Frame Rate" is covered in a limited way.

The parameters “Unit” and “Distance to User” are equalized, to
allow a machine learning algorithm to be trained on one dataset
and tested on the other. The labels were also aligned for the same



Transfer of Gaze Classifiers: Towards a Distance Metric for Eye Tracking Data

ETRA 25, May 26-29, 2025, Tokyo, Japan

Table 1: Parameter of the datasets; Datasets: 1. 360_em [Agtzidis et al. 2019], 2. GazeBase [Griffith et al. 2021], 3. NVGaze [Kim
et al. 2019][Fuhl et al. 2021], 4. Andersson et al. [Andersson and Larsson 2017], 5. GazeInWild [Kothari et al. 2020] [Fuhl et al.
2021], 6. Labelled Pupils in the wild [Tonsen et al. 2016][Fuhl et al. 2021]; Label: Fix - Fixation, Sac - Saccade, SP - Smooth
Pursuit, PSO - Post-Saccadic Oscillation, GF - Gaze Fixation, GP - Gaze Pursuit, GS - Gaze Shift, Blk - Blink, Undef - Undefined,
Err - Error, N - Noise, Unass - Unassigned, HP - Head Persuit, VOR - Vestibulo-ocular reflex, OKN - Optokinetic nystagmus

Data-| Frame Field of View Unit Dimen- | Setup & Distance to Stimuli & Task Labeling
set Rate sion of User
use
1. 120Hz 1440 px x 1280 px Coordinates on 3D VR | Free Head Movement Free viewing of videos Fix, Sac, SP, HP,
360° video VOR, OKN, N,
surface Unass

2. 1000 Hz 474 mm x Degrees of visual 2D Free Head Movement; fixation, horizontal and random Fix, Sac, Blk

297 mm/ 1680 px angle Distance: 550 mm oblique saccade tasks, reading, free

x 1050 px video viewing, gaze-driven gaming
3. 120 Hz Monitor: 27”7 Gaze vector 2D & Monitor: Fixed Head Rotating letter "E", changing Fix, Sac, SP, Blk,
inches 3D VR Position, 530 mm contrast Err
distance

4. 500 Hz 380 mm x 30 mm/ Pixel 2D Fixed Head Position, Free viewing of images, following | Fix, Sac, PSO, SP,

1680 px x 1024 px Chin and Forehead moving objects in videos, moving Blk, Undef

Rest, 670 mm distance dots
5. 120Hz - Rotational 3D Free Movement Indoor navigation, Ball catching, GF, GP, GS
velocities (deg/s), Object search, Tea making
gaze vector
6. 120 Hz - Gaze vector 3D Free Head Movement Following moving red ball Fix, Sac, SP, Blk,
Err

reason. The influence of these parameters on the distance metric
must be investigated in further research with different datasets.

3.1 Datasets

For the 2D dataset Andersson et al. [Andersson and Larsson 2017]
was used. The set is further referred to as the Andersson et al.
set. Data were captured in 500 Hz using a static eye tracker with
a chin and a forehead rest, so the participant’s head was fixed.
They were supposed to observe the content on a screen freely, in-
cluding images, moving dots and videos. As 3D data, the 360_em
dataset [Agtzidis et al. 2019] was chosen, which has been men-
tioned earlier, because of the similar stimuli used (video) compared
to Andersson et al.. These data were recorded by an eye tracker
integrated into a VR headset, while participants watched a 360°
video and were asked to move their head and look around freely.
The gaze positions in the data are given as coordinates on the video
sphere.

The distribution of event labels in the 360_em dataset can be
seen in the left diagram of Fig. 1. To stay close to the target use case,
first a subset of Andersson et al. with annotated videos was cho-
sen. However, this subset contained an imbalance towards smooth
pursuit, as shown in the central diagram of Fig. 1. This was coun-
teracted by adding some data from the image viewing subset of
Andersson et al. until a comparable distribution was reached, later
referred to as "like_360_em". This data subset "like_360_em" was
used for the following comparisons. The distribution of gaze in the
field of view is different between the two datasets. In Andersson et
al. a computer screen was used, which limits the field of view to
31.66° x 25.24°. The headset used in 360_em has a field of view of 86°
x 92° [Sauer et al. 2022], which allows for a larger view compared

to Andersson et al. The distribution of the view is therefore wider
in 360_em, which can be seen in Fig. 3. The horizontal deflection of
the eye also has a different shape in the distribution, with the gaze
being concentrated in the center at 360_em. A possible explanation
could be the enforced fixed head in Andersson et al., preventing
users to follow their eye movements with their head to keep eyes in
close-to-center positions. To further compare the datasets, the unit
has to be unified to angular velocity, which will be discussed later
in this work. The comparison of the velocity distribution in Fig. 2
shows that, with the exception of Smooth Pursuit, the velocities in
360_em are more widely distributed. It is striking that in 360_em
the distribution of velocities found during smooth pursuit is very
similar to the distribution found during fixations.

3.2 Parameters that may be aligned between
datasets

Parameter Labeling: The event labels used in the dataset are
highly relevant. If the training set does not contain all the labels
that the application needs to detect, the dataset cannot be used.
Consequently, having the required event labels is an exclusion
criteria of the decision framework. If a dataset covers more labeled
event types than required, they can be used with any labels not
required in the target scenario collected in one "Other" class, or
merged if arguable. For the selected data, labels were merged as
follows: Anderson: "PSO" => "Fixation" and "Blink" or "Undefined"
=> "Other"; 360_em: "Noise" => "Other". However, it remains to be
tested, whether it is better to merge close labels or to collect them
in one rejection class. The labels for our case are thus "Fixations",
"Saccades", "Smooth Pursuit" and "Other".
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Figure 1: Event distributions for 360_em, Andersson et al. video samples, and the "like_360_em" subset of Andersson et al.
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Figure 2: X axis velocity distribution for 360_em and the
Andersson et al. "like_360_em" subset
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Figure 3: Angle distribution of the X component of 360_em
and the Andersson et al. "like_360_em" subset

Parameter Unit: A common unit to represent movement infor-
mation is required. The often reported pixel dimensions are not
very suitable for this, as interpretation depends on many factors,
such as screen resolution, display dimensions, field of view and
distance to the user. For this reason, angular velocity (angles in
degrees per second) was chosen as unit in this paper because it is
independent of these parameters. Converting the Andersson et al.
set to angular velocity meant to convert the pixel positions into
millimeters, constructing position vectors based on these coordi-
nates as well as the distance to the user and calculating the angles
between consecutive vectors. Finally, the angular velocity was cal-
culated in degrees per second based on the frame rate. Converting
the 360_em [Agtzidis et al. 2019] set meant to port the original
code from Matlab to Python. In this code directional vectors were
created for the positions on the video sphere and head movements

were compensated by adjusting the directional vectors accordingly.
Afterwards, the angle between two consecutive vectors was cal-
culated, and angular velocity was determined on the basis of the
frame rate. However, if a dataset is using a unit such as pixels but
does not provide the required information to transform the unit
into angular velocity, the dataset cannot be used. Thus incomplete
documentation of a dataset also is an exclusion criterium.

Parameter Frame Rate: Having the same frame rate between the
source and target scenario is decisive. For fixing a difference, re-
sampling one dataset is an option. The two datasets used here have
different frame rates, so the frame rate of the Andersson et al. set
was downsampled from 500 Hz to 120 Hz, to match the frame rate
of the 360_em dataset. We evaluated seven different approaches
for downsampling, which are listed in the table 2. Two different
application orders were also compared. In the first, the gaze posi-
tions were interpolated first and then the velocity was calculated.
In the second, it was the other way around, so the velocity was
interpolated. To determine the similarity of the interpolated data to
the original, the velocity distribution was compared using cosine
similarity. The results in table 2 show that the interpolation of the
velocity in combination with the Samplerate package with the con-
verter "zero_order_hold" leads to the most similar results compared
to the original. For the reassignment of the label to the resampled
data two different methods were tested. In the first method the label
was assigned using the label closest in time to the original data
(close in time). In the second method the label was assigned using
the label with the closest velocity (close in value). For this purpose,
the velocities of the original samples, from which the new resam-
pled sample was created, were compared with the velocity of the
new sample. The label of the sample with the most similar velocity
was assigned. To determine which label assignment method comes
closest to the original, data was split by events and the distribution
of velocities for each event label were compared again with the
original data using cosine similarity. Table 3 shows the results, from
which it can be seen that assigning the label by similar velocity
resulted in a velocity distribution more similar to the original.

3.3 Parameters with an effect on performance

For a first investigation regarding the effect of parameter differ-
ences on performance, we selected a CNN with the structure of



Transfer of Gaze Classifiers: Towards a Distance Metric for Eye Tracking Data ETRA °25, May 26-29, 2025, Tokyo, Japan

Table 2: Interpolation packages, classes and functions with cosine similarity results

Name Description Position Velocity
Interpolation Interpolation
Signal.resample [community 2025d] Part of scipy, uses the Fourier method 0.9545 0.9762
Samplerate (zero_ order_ hold) Resampler with a zero order hold converter of the Samplerate 0.9461 0.9994
[Wagner 2017] package
Samplerate (linear) [Wagner 2017] Resampler with a linear interpolation of the Samplerate package 0.9392 0.9957
Interp [Developers 2024] Part of numpy, uses linear interpolation 0.942 0.9416
CubicSpline [community 2025b] Part of scipy, interpolates with a piecewise cubic polynomial 0.9476 0.9993
PchipInterpolator [community 2025c] | PCHIP = Piecewise Cubic Hermite Interpolating Polynomial; Part 0.9451 0.9978
of scipy, uses a monotonic cubic interpolation
AkimalDInterpolator [community Part of scipy, uses a sub-spline that is continuously differentiable 0.9455 0.9979
2025a]
Table 3: Label assignment using original label close in time ix ] 001 0.01 m D @
or close in value 0.8
sacro.ozo.o7 007 0 0
L
T Ps0-005016037042 0 o [§O°K
Label ‘ close in time ‘ close in value = 5
3 sp-004001 o [KFMoo2 o 0.4
Fixation 0.997 0.998 2 .-
blink-0.21 0.03 0.01 0 [J¥Z40.01
Saccade 0.752 0.775 0.2
SP 0.994 0.994 undefﬂ 021 O 0 01 O oo
Other 0.989 0.991 fix sac pso SP blinkundef
Predicted value
Figure 4: Confusion matrix of the CNN
Biwaro and Kasprowski [Birawo and Kasprowski 2022]. This al- trained on "like_360_em" with only posi-
gorithm had already proven itself in the corresponding paper in tive component angle velocity
comparison with other algorithms. "The network is composed of .

. ) . . fix{BE] 0 0 001 0 O
different layers, precisely three convolutional layers with a grad- .. o8
ually increasing number of filters (32, 64 and 128) with a kernel o JCOlpggoos00z 00
size of 3, a batch normalization operation before activation and an T pso0.43 0.06 001 0 0 oeg
output layer. Input to the network is a sequence of gaze samples g spm 0 0 03800l 0 042
of shape 100 x 2." [Birawo and Kasprowski 2022]. Like in Biwaro < i ™ 001 o .
and Kasprowski [Birawo and Kasprowski 2022] sequences of the [0-2

. . . undefro.zt;MO.oz 0 01 0
two dimensional samples are used as input. To be able to use the ———t 0.0
datasets with the CNN, the data must be unified in the same unit fix Saﬁregfciedsfa,f.!”k“"def
and with the same frame rate as described earlier in this chapter.

First, a CNN was trained with positive component velocities Figure 5: Confusion matrix of the CNN
(absolute values) from the dataset "like_360_em" of Andersson et trained on "like_360_em" with positive
al.. Then a second was trained with positive and negative velocities and negative angle velocity
on the same data. The velocities were negative when a backward

fix oKW 0.01 0.02 0.07 0 ©
movement took place. The CNNs were tested on the same dataset 08
as trained (different subsets as usual). Comparing the confusion e i 0 [ R
matrices of the two CNNs (Fig.. 4 and Fig. 5) it can be seen that the 3 pso-0.03006[(XR 0 001 0 063
event detection for each label has improved or remained the same, T oo o o PMo.S
except for Smooth Pursuit. The average event detection increased < °

blink-0.02 0.01 0 0.01 [l

from 51% to 56%. -0.2

After compensating the head movement from the 360_em dataset, undef O BRI ° R 00
it becomes clear that SP is difficult to impossible to detect. The fix sac bso 5P Dlinkundef
confusion matrix of the CNN trained on angular velocity showed
a Qetection rate of 98% for ﬁxat%ons, 75% for saccades and. 8?% for Figure 6: Confusion Matrix of a CNN
noise, but 0% for smooth pursuit on the. same dataset. Th'ls is dye trained on even balanced amount of the
to a low occurrence of SP of 6.02%, with 46% overlapping with labels Fixation, Saccade and Smooth Pur-

vestibulo-ocular reflex (VOR) and 17% overlapping with VOR and suit
optokinetic nystagmus (OKN). If these are canceled out by removing
head movements from the angular velocities, only 2.22% of SP labels
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remain to train the CNN, which could explain the low detection,
but further research is needed to make a general statement.

Parameter Label: To achieve better results, the input data was
adjusted. The number of event labels to be detected, i.e. fixation,
saccade and SP, was adjusted using undersampling. To preserve the
natural gaze flow, the sequences were undersampled instead of the
samples themselves. As it can be seen in Fig. 6 in comparison to
Fig. 5, the average detection rate has increased to an average event
detection of 86,67% for the same dataset. This result shows that the
label distribution has a strong influence and should be weighted
more heavily in the distance metric.

Parameter Field of View: To exclude the possibility that the differ-
ent fields of view of the datasets is a factor in the detection of the
events, the samples of 360_em were gradually restricted to different
fields of view according to their position. The training was then
performed on the angle-filtered data and tested on the complete
dataset. As can be seen in table 4, fixations were still detected at
a similar percentage. The detection of saccades and SP decreases
slightly, but this is related to the lower occurrence. Noise was no
longer detected, as this was almost completely sorted out by the
angle filter. This indicates that the field of view was not a limiting
factor in detection of the events with these two datasets. Therefore,
the parameter will probably have a very low weight in the metric.

Parameter Stimuli & Label Distribution: The CNN model trained
on Andersson et al. was finally tested on the 360_em dataset. Three
different sample datasets were used for this. The first contained
only samples taken from a similar stimulus (videos), the second
contained samples selected to match the distributions of events
found in 360_em (image and video stimuli). The last one was created
by taking samples from video, image and moving dot data in such a
way, that event labels are balanced. The confusion matrices of these
tests are shown in Fig. 7. It shows that evenly distributed events
(c) produce good results when targeting datasets with unknown
distributions, even if the samples used were recorded showing
different stimuli. If event frequencies of the target set are known,
matching this distribution (b) might be considered if there are
prominent events for which classification results should be high.
Regarding the decision framework this provides further insights:
it does not only matter that the relevant event labels are present
in the dataset, they should also have a relevant frequency. They
do, however, not need to show a similar distribution, as this can be
compensated for, as demonstrated above. For the compensation to
work properly, however, relevant events should not be significantly
underrepresented.

Parameter Setup & Dimension of use: The extent to which the
setup or even the choice of eye tracker has an influence on the
distance metric can not yet be determined. Several scenarios need
to be compared for this. The impact of different "Dimension of use"
must also be determined by comparing several datasets.

4 Summary

In this paper, the problem of selecting the right training dataset
to train a classifier for eye movements is discussed, and first steps
towards a decision framework and a distance metric to compare
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Figure 7: CNN trained on different Andersson et al. sets and
tested on 360_em

datasets were taken. Parameters were introduced to assess the dif-
ference between datasets. A use case was presented to discuss the
effects of different transformation strategies on data quality or clas-
sification results. Following this strategy, we could either identify
a valid transformation (e.g. for frame rate downsampling between
500 Hz and 120 Hz) - rendering the parameter practically irrelevant
—, show that differences in parameters did not matter (e.g. field of
view), suggest a neutral way of specification (e.g. unit/angular veloc-
ities) or show that a parameter is highly relevant (e.g. distribution
of relevant event labels). This shows which parameters should be
weighted as strongly in the distance metric. Two exclusion criteria
have also been identified: a dataset needs to provide the required
event labels with a relevant frequency to be eligible and if units
are not reported in a scenario agnostic format (such as angular
velocities), the datasets documentation needs to provide relevant
information regarding the setup (e.g. distance of the user, size of
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Table 4: Angle filtered event distribution with detection results

Angle Fixation Saccade Sp Noise Fixation Saccade Sp Noise
occurrence | occurrence | occurrence | occurrence detection detection detection detection
FoV 86° x 92° 79.39% 10.33% 6.06% 4.21% 97% 89% 8% 79%
1/3 FoV 28.67° x 30.67° 86.14% 8.59% 5.26% 0.01% 96% 81% 5% 0%
1/4 FoV 21.5° x 23° 87.71% 7.17% 5.10% 0.02% 94% 79% 8% 0%
1/5FoV 17.2° x 18.4° 90.21% 6.52% 3.25% 0.03% 95% 80% 8% 0%
1/6 FoV 14.33° x 15.33° 91.99% 5.64% 2.36% 0.01% 97% 79% 1% 0%
1/6 FoV 14.33° x 15.33° 93.53% 4.76% 1.7% 0% - - - -
Andersson FoV 31.66° x 25.24° 79.39% 10.33% 6.06% 4.21% 95% 83% 9% 0%

the screen, DPI) to allow for a unit transformation. Future research
will address more datasets with the goal of finally deriving the
metric function. Further research will show if the outcome of the
distance metric can be applied to different algorithms, especially to
real-time-capable algorithms, or whether further modifications are
necessary for each.
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