

1 Towards design guidelines for virtual reality training for the chemical industry

2 Sofia Garcia Fracaro^{a,c}, Philippe Chan^{b,c}, Timothy Gallagher^d, Yusra Tehreem^{e,f}, Ryo Toyoda^g,

3 Kristel Bernaerts^c, Jarka Glassey^g, Thies Pfeiffer^e, Bert Slof^d, Sven Wachsmuth^f, Michael Wilk^{a*}

4 ^a Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany

5 ^b Arkema, Rue Henri Moissan, 69310 Pierre-Bénite, France

6 ^c KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium

7 ^d Utrecht University, Heidelberglaan 1, 3584 CS Utrecht, The Netherlands

8 ^e HS Emden/Leer, Constantiapl. 4, 26723 Emden, Germany

9 ^f Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany

10 ^g Newcastle University, Merz Court, NE1 7RU Newcastle upon Tyne, United Kingdom

11 *Corresponding author. Email address: michael.wilk@merckgroup.com

12

13

14

15

16

17

18

19

20

21

22 **Abstract**

23 Operator training in the chemical industry is important because of the potentially hazardous nature of
24 procedures and the way operators' mistakes can have serious consequences on process operation and
25 safety. Currently, operator training is facing some challenges, such as high costs, safety limitations and
26 time constraints. Also, there have been some indications of a lack of engagement of employees during
27 mandatory training. Immersive technologies can provide solutions to these challenges. Specifically,
28 virtual reality (VR) has the potential to improve the way chemical operators experience training
29 sessions, increasing motivation, virtually exposing operators to unsafe situations, and reducing
30 classroom training time. In this paper, we present research being conducted to develop a virtual reality
31 training solution as part of the EU Horizon 2020 CHARMING Project, a project focusing on the
32 education of current and future chemical industry stakeholders. This paper includes the design
33 principles for a virtual reality training environment including the features that enhance the
34 effectiveness of virtual reality training such as game-based learning elements, learning analytics, and
35 assessment methods. This work can assist those interested in exploring the potential of virtual reality
36 training environments in the chemical industry from a multidisciplinary perspective.

37

38 **Keywords:** Virtual reality; Chemical industry; Operator training; Learning analytics; Game-based
39 learning; Assessment

40

41

42

43

44

45 **1. Introduction**

46 **1.1. The problem statement**

47 The chemical process industry is widely recognised as a high-risk industry where employees are at
48 constant risk of injury and even fatality. These risks are mainly contributed by the use of chemical
49 substances with hazardous properties (e.g. flammability, explosivity, toxicity) and by the extreme
50 conditions (e.g. high temperature, high pressure, large volumes) that are required to process these
51 chemicals (Srinivasan et al., 2019). Therefore, the health and safety of all chemical process industry
52 stakeholders (i.e., employees, neighbouring communities) are of utmost importance. Huge
53 improvements in terms of process safety design and operation technology have been rapidly
54 developed in the past decades to ensure the safety of the stakeholders. However, despite these
55 improvements and control measures, major accidents in the process industry are still occurring today
56 and have not decreased significantly compared to even a few decades ago (Bhusari et al., 2020; Lee et
57 al., 2019).

58 One of the main contributing factors of accidents in the process industry relates to human factors
59 such as safety culture, emergency preparedness and situation awareness (Bhusari et al., 2020; Nazir et
60 al., 2014). It was found that accidents in the oil & gas process industry were mainly (79%) caused by
61 maloperations of the process operators who were responsible for stabilising emergency deviations
62 (Antonovsky et al., 2014). Also, a recent report revealed that 76.1% of the chemical accidents in South
63 Korea from 2008 until 2018 were caused by human error (Jung et al., 2020). These human failures can
64 occur due to a lack of competence or even latent errors from the organisational level. Either way,
65 adequate personnel training is crucial to develop a highly trained workforce that has a flawless
66 competence in dealing with emergency situations.

67 However, currently used training approaches have some intrinsic limitations. While it is essential
68 that the workforce understands, is prepared to follow the correct procedure and act fast in emergency
69 situations to prevent the escalation of an event (Colombo and Golzio, 2016; Kluge et al., 2014), training

70 of responses to non-stationary abnormal operations cannot be reproduced in the actual plant due to
71 the dangerous nature of the event (Nakai et al., 2014). Current training methods in the industry vary
72 from process to process, but they often could include a PowerPoint presentation, computer
73 simulations, e-learning, learning of safety and/or production documents and/or practices in pilot or
74 real production plants. The latter typically includes the need for a physical supervisor that provides
75 guidance and detects mistakes during the training process (Ho et al., 2018). This methodology is very
76 time consuming, especially for the supervisor who must repeat the sessions with different trainees.
77 Such limitations render the current training methodology inefficient in some cases, and with room for
78 improvement in most. The use of immersive technologies in technical training can provide an answer
79 to these issues by allowing, for example, virtual reality emergency training without risks for the trainee
80 or plant in real life (Manca et al., 2013; Norton et al., 2008), or the possibility of incorporating a virtual
81 reality supervisor that simulates guidance and supervision reducing training periods (Ho et al., 2018;
82 Norton et al., 2008).

83 This publication aims to present a multidisciplinary virtual reality (VR) prototype design for the
84 training of operators in the chemical industry. The paper is divided into four sections, starting with an
85 introduction about the framework of immersive technologies used for training in general and in the
86 chemical industry, and specifically the use of VR in training. The second section details the
87 multidisciplinary collaborative approach for developing the VR training simulation. In the third section,
88 conclusions of the work are presented and finally planned future work is described in the last section.

89

90

91

92

93

94 **1.2. The CHARMING project**

95 CHARMING is an inter-sectoral and interdisciplinary *European Training Network*¹ for *Chemical*
96 *Engineering Immersive Learning*², which aims to study how immersive technologies and games can
97 teach chemistry and chemical engineering concepts to children and students, and train employees in
98 chemical and process industries. Within the project, the key goal of Work Package 3 “Chemical
99 engineering immersion for employees” is to support workforce training in the chemical industry in
100 Europe. As it is crucial to motivate and teach current and future employees, Work Package 3 is
101 developing learning strategies, content, and prototypes that can enhance the learning experience. This
102 challenge is being addressed through a close collaboration of chemical engineers, chemist, computer
103 science specialist, and educationalists that are working on a VR experience of a chemical industry
104 environment (MARIE SKŁODOWSKA-CURIE ACTIONS, 2018).

105

106 **1.3. Immersive technologies and training**

107 Numerous studies have demonstrated that immersion has the potential to increase learning
108 experiences (Huang et al., 2016) and improve creativity and engagement (Huang et al., 2010), which is
109 essential for training. According to Chris Dede’s definition, “Immersion is the subjective impression
110 that one is participating in a comprehensive, realistic experience” (Dede, 2009). For example, reading
111 an interesting book can make us immersed in the storyline and imagine the actions in our heads.
112 Although we know that this is not reality, in our minds, we are creating a whole scene while reading
113 the book and accepting the fiction. Thus, an exciting book has the potential to immerse us mentally to
114 some extent. Similarly, through immersive technology, mental immersion can be achieved and/or
115 increased when physical immersion is created (Sherman and Craig, 2003). The imagination of a person

¹ https://ec.europa.eu/research/mariecurieactions/actions/research-networks_en

² <https://charming-etn.eu/>

116 is then supported by physically delivered sensations of another world which is not the real world.
117 Immersive technology blurs the boundary between virtual and real worlds (Lee et al., 2013), making
118 the user perceive physical presence in a virtual environment (Jasoren, 2018). Thus, immersive
119 technologies can create an artificial situation to train people for the best and worst scenarios.

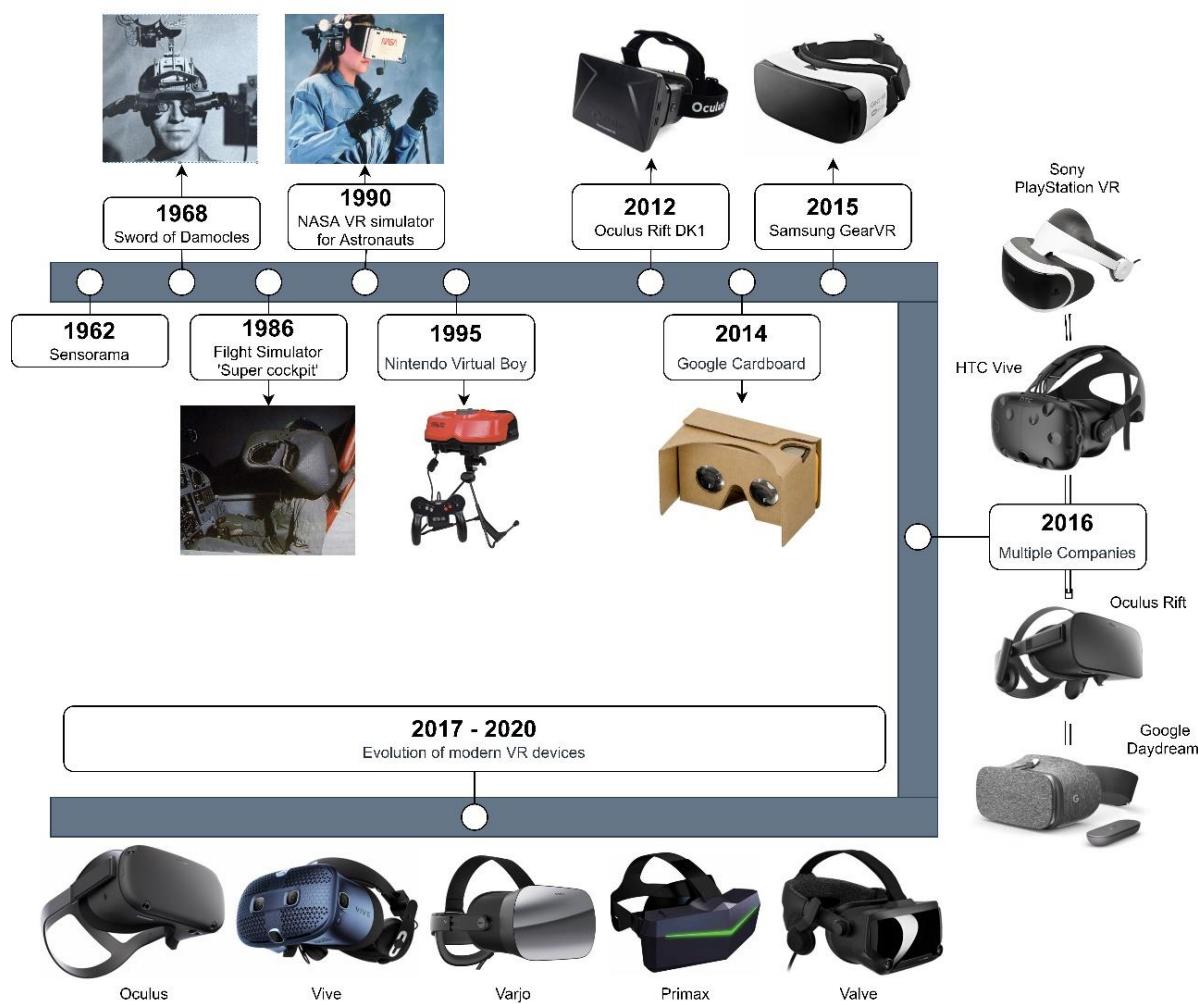
120

121 **1.3.1. Immersive training in the chemical process industry**

122 Immersive technologies are an innovative element in trainings of employees in different industries
123 and sectors. Specifically, in the process industry, immersive technologies are gaining popularity, for
124 the procedures and safety training of employees. In the past ten years, there has been a significant
125 increase in the number of publications that report an immersive solution applied to training in this
126 industry (Garcia Fracaro et al., 2020, n. in submission process). These solutions explore different
127 aspects of training, where one of the common goals is to achieve a high transferability of the
128 knowledge or skills acquired to the real plant (Gallegos-Nieto et al., 2017). Immersive technologies, in
129 general, allow the trainee to practice tasks safely in the virtual environment which in the real world
130 would be too dangerous or not possible to perform, and very expensive to organize or reproduce
131 (Gallegos-Nieto et al., 2017; Mól et al., 2009; Nakai, 2015)

132 A recent review found that almost 70% of the reported immersive training experiences available
133 in the process industry have included a procedure training application (Garcia Fracaro et al., 2020, n.
134 in submission process). Procedure training is key to perform the complex steps of a process in the
135 correct order [e.g., standard operating procedure of the hydrodesulfurization process (Nakai and
136 Suzuki, 2016)], understanding the meaning of actions (Colombo and Golzio, 2016), and the possibility
137 of practice repeatedly the training allows a standardized and validated formation of the operator (Nazir
138 et al., 2013)]. Safety or emergency training functionalities are a specific part of the procedure training.
139 As this type of dangerous training cannot be done in real life to its full extent, there is a higher

140 motivation to include them in immersive technologies due to the importance of the training and the
141 benefits of the technology (Nakai, 2015). However, including emergency situations in the experiences
142 has not been explored to a great extent, as these scenarios were included in 30% of the reported
143 immersive solutions.


144

145 **1.3.2. Virtual reality for immersive training**

146 There are different kinds of immersive technologies. For example, augmented reality (adding
147 digital elements in real-world), virtual reality (making digital world completely cut off from the real
148 world) and mixed reality (combining both real and virtual worlds to interact with each other). Here, we
149 will discuss VR which can create full immersion and disconnect us totally from the real world. This is
150 because VR is a computer-generated interactive simulation of reality. This simulation is a 3D
151 environment in which a user can look around, navigate, and interact with virtual objects in an almost
152 natural way (Sherman and Craig, 2003). So, VR can allow the user to see, hear, touch, and even smell
153 in a virtual world causing a sense of full immersion (Berg and Vance, 2017). Taking the advantage of
154 this full immersion, VR has the potential to create dangerous or emergency situations in training so
155 that a user can experience the moment of decision making and the consequences of wrong actions in
156 a virtual simulation. Thus, VR training is often used in healthcare (Harrington et al., 2018), military (Liu
157 et al., 2018), physical skills, education (Kang and Kang, 2019), psychology (Formosa et al., 2018) and
158 industrial training (Manca et al., 2012b).

159 For training in VR, selection of hardware also matters regarding cost, portability and quality. Head-
160 mounted-displays (HMDs) are currently considered to be the most suitable visual devices (Zhang,
161 2017). With the help of HMDs, input sensors and a 3D virtual environment, users can easily accept the
162 virtual world as reality. Some challenges, such as collaborative face-to-face training, still remain when
163 using HMDs because the users get completely cut off from their surroundings, but this problem could

164 be solved by connecting users with HMDs into one VR environment over a network where they
165 collaborate (all in the virtual world) (Bednarz et al., 2015). VR is not a new concept (Mazuryk and
166 Gervautz, 1999). It started around 1962 but gained success after 2012 when the affordable and
167 portable VR headsets came into the market (TechCrunch, 2014). The improvements in hardware,
168 display resolution and cost made HMDs preferable for companies and research centres. At the time of
169 writing, numerous HMDs from Oculus, HTC, Valve, Lenovo, etc. and many smartphone-based solutions
170 are available on the market (as shown in Figure 1). New features are being developed by a large online
171 community due to freely available game engines. Thus, the improvements are not only in making good
172 VR applications but also more advanced HMD devices to overcome the motion sickness, sense of
173 isolation and other remaining limitations soon (Nunes De Vasconcelos et al., 2019). This rapid evolution
174 of VR headsets makes it easier to create efficient training environments regarding quality, cost, and
175 portability.

176

Oculus

Vive

Varjo

Primax

Valve

177

Figure 1. Evolution of modern VR headsets.

178

179 2. Developing VR training simulations: a multidisciplinary collaborative approach

180 VR has for a long time been a specialization of computer scientists, yet for a successful learning
181 experience, VR training requires a broader view than just focusing on technical elements. It cannot be
182 assumed that just by using VR the trainee will learn automatically (Makransky et al., 2019b). An
183 effective VR training system involves content, technical and educational expertise that transform the
184 experience to be motivating, providing feedback and guidance that allows the trainer and trainee to
185 easily use the system. Thus, for VR training design, the viewpoints of instructor, trainee, educator and
186 developer should be synchronized for a complete learning experience (Lövquist et al., 2012). To this

187 end, a collaboration between a team of researchers from multiple disciplines is essential. The
188 CHARMING Work Package 3 collaborative team consists of two chemical engineers, a chemist, an
189 educational specialist and a computer science specialist (Mikropoulos and Natsis, 2011). Each
190 researcher is contributing to a specific aspect of the VR training experience, covering content
191 requirements of the training, assessment tools, game-based learning elements, learning analytics, and
192 the development of the required VR environment.

193

194 **2.1. The needs of the trainer and the learner in the chemical industry**

195 Training today in the chemical industry is facing certain challenges. Trainers and trainees reported³
196 that there is a high amount of information (in some cases too much), which makes the training session
197 long and tedious. Such sessions typically take place in traditional classroom settings or through e-
198 learning environments. The employees often lose motivation to complete them, demonstrating a lack
199 of interaction in the session, silences, or distractions with external stimuli, such as mobile phones. Also,
200 it has been reported that learning all the necessary information in a short period of time is
201 overwhelming. Because there is a need to continue the development of skills and competences, some
202 sessions are repeated every year, which could become uninteresting. Both trainers and trainees have
203 reported that increasing the training in the field could be an improvement, where from the trainees'
204 perspective they would learn the most, and the trainers would benefit from the observation of
205 behaviour during role-play situations. The effectiveness of training, meaning the defined acquisition of
206 the knowledge and skills, is highly important, even more than the efficiency of the training (in terms
207 of speed and minimal cost) (Wilk et al., 2020). Field training in VR has the potential to provide these

³ „Round table talk with Trainers & Apprentices on Education and Training“ in the Third Network Wide Event of the CHARMING project – March 2020, Darmstadt, Germany. <https://charming-etc.eu/2020/03/26/charming-third-network-wide-event-and-midterm-check/>

208 functionalities, also allowing emergency field training, such as fire or spillages, which is not possible to
209 perform in real life.

210 Practical sessions, which for example are used in the German System, in the process plant learning
211 or apprenticeships programs are based on a “godfather/tutor methodology” where a trainer or an
212 experienced operator provides guidance and feedback during the sessions (Ho et al., 2018; Kluge et
213 al., 2014). This method is very time consuming and presents a challenge because it is common that the
214 trainer is outnumbered by the trainees. This means that the trainee cannot be supervised all the time,
215 and during the practice sessions feedback might be delayed. Also, this methodology can be subjective
216 and intrinsically biased from the perspective of the expert trainer (Manca et al., 2012a; Nazir, 2014).
217 Trainers have reported that VR sessions could improve this aspect of training if continuous feedback
218 to the trainees is provided while allowing them to make mistakes safely within the virtual environment.
219 In addition, VR can provide neutral operator assessment, bypassing the human judgement of the
220 trainer (Manca et al., 2012a).

221 One thing that would benefit both the trainers in teaching and the trainees in learning the required
222 knowledge and skills to perform work-related tasks is support for decision making related to training
223 and learning processes (Ifenthaler et al., 2018). For example, if there were easier ways for a trainer to
224 identify the weaknesses and strengths of each learner or groups of learners, then they would be able
225 to allocate their training efforts more efficiently and effectively. This is where the application of
226 learning analytics can help along with accurate assessment and feedback.

227 To achieve analytics of learning in the VR environment, it is important to identify what information
228 should be extracted from the trainee’s interaction data. Moreover, it is important to evaluate the
229 corresponding weighting of this information according to the given criteria. Therefore, a methodology
230 which unobtrusively embeds and improves the validity of the assessment in the virtual environment is
231 needed to provide automated data recording, analysis, and visualisation processes of the data
232 generated from the VR training.

233 **2.2. Safety and process plant training**

234 In this multidisciplinary development, one of the key aspects is “what” is going to be the training
235 of the immersive experience. In the framework of the CHARMING project, two beneficiary
236 organizations are multinational chemical companies (i.e., *Merck KGaA* and *Arkema*) who provide the
237 requirements and recommendations for content development. There are two main aspects considered
238 when defining the “what”: first the educational content, and second, the way it is presented to the
239 trainee.

240

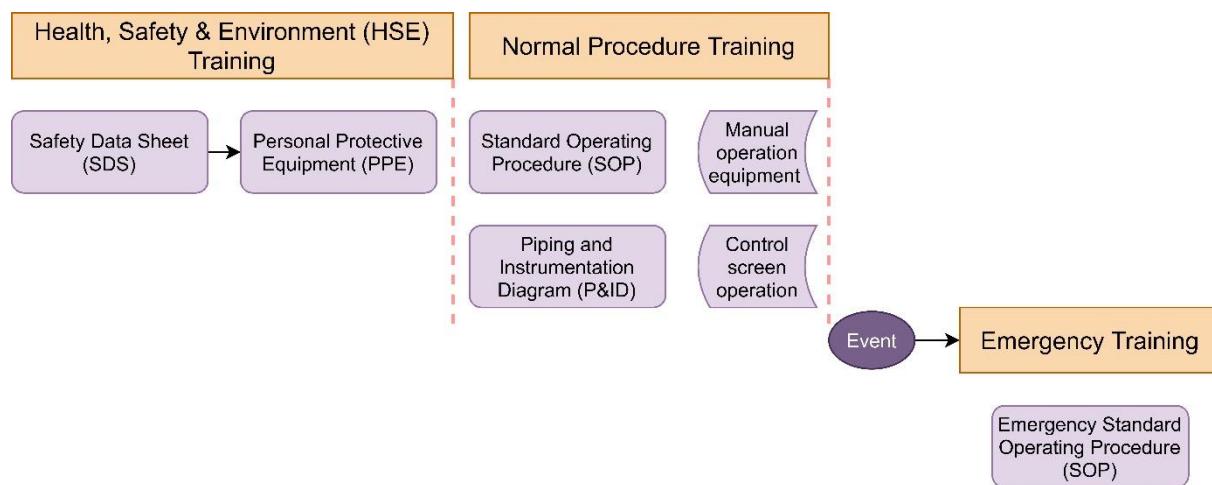
241 **2.2.1. The content of the training**

242 The chemical reaction selected for this training is the commercial production of n-butyllithium (n-
243 BuLi or n-C₄H₉Li), an organolithium compound, from the reaction of metallic lithium and chlorobutane
244 (n-BuCl) in n-hexane. The n-butyllithium has an estimated annual usage of 1-10 tonnes per year in the
245 organic synthesis and polymer industries in the European Economic Area (ECHA, 2020a). This reaction
246 was chosen as the training use case due to its hazardous conditions during the preparation, production,
247 and handling of the final product: flammability, corrosivity, toxicity, and pyrophoricity (Merck KGaA,
248 2012). The operator must be highly trained on how to proceed to avoid circumstances where the
249 organolithium compound is in contact with air, oxygen, moisture, water, and a source of ignition
250 (Rathman and Schwindeman, 2014).

251 There is a set of documents that are crucial in chemical plant operations, and every operator should
252 be highly familiar with them:

253 - Standard Operating Procedure (SOP), a document that describes a detailed set of instructions
254 to follow during routine operations and emergency procedures;
255 - Safety Data Sheet (SDS), a document that “should provide comprehensive information about
256 a substance or mixture for use in workplace chemical control regulatory frameworks. Both

257 employers and workers use it as a source of information about hazards, including
258 environmental hazards, and to obtain advice on safety precautions" (ECHA, 2020b). Also listed
259 here are the requirements on Personal Protective Equipment (PPE);
260 - Piping and Instrumentation Diagram (P&ID), a process engineering drawing that describes all
261 the piping connections and equipment used in the process design of the plant (Cook, 2010).


262

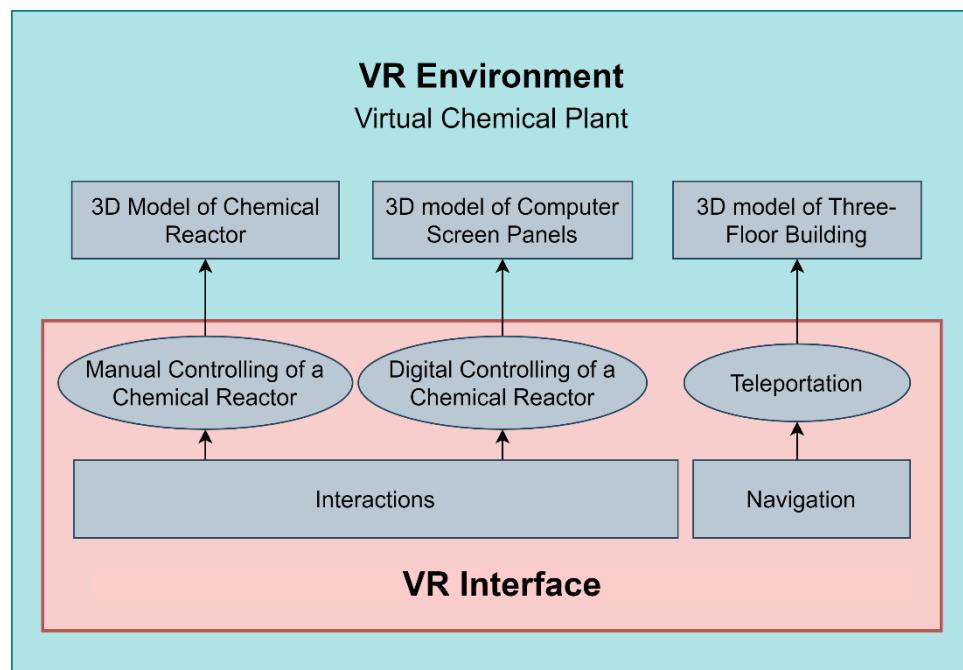
263 **2.2.2. The training experience**

264 The learning objective of the prototype is focused on how to operate a chemical reactor and how
265 to respond to emergencies. Therefore, we consider it not a problem that the reaction of formation of
266 n-butyllithium and the associated reactor operation is not exactly known to the employees. The
267 prototype embeds sufficient information to fill in some essentials on the product and process.
268 Moreover, operator training is mostly focussed on training operational and safety procedures. The
269 virtual production takes place in a universal batch reactor of 1.6 m³, which is a common equipment in
270 the chemical industry. This makes the acquired skills of the training easier to transfer between
271 companies.

272 There are three main stages of training regarding content, presented in Figure 2. First, the operator
273 learns about the nature of the chemicals that are involved in the procedure, the hazards related and
274 how to handle them, and about the Personal Protective Equipment that is required. The emphasis of
275 this phase is on understanding the hazards and safety requirements of the procedure before the start
276 of the task. Then the trainee is allowed to learn and practice the reaction procedure, following the
277 Standard Operating Procedure. The trainee operates the reactor manually (identification of
278 equipment) and through the control screen next to the reactor. There is a special mode of simulation
279 in which emergency events are incorporated, the trainee is required to identify those, and follow the
280 correct Emergency Standard Operating Procedure to solve the situation before it evolves into a serious

281 accident. During training in the chemical industry, rehearsing potentially dangerous situations, for
282 example, a pump failure that could trigger a leakage of n-butyllithium, is highly important. In this
283 situation, the operator must act quickly following the correct Standard Operating Procedure. Training
284 this situation with traditional methods means assigning, reading or showing consequences with
285 pictures or video in a classroom PowerPoint-presentation. In our prototype, the possibility of
286 simulating events that can evolve into accidents is included to provide a degree of immersion during
287 the training that cannot be achieved during the traditional training. These events are selected as a
288 result of a simplified hazard and operability (HAZOP) analysis.

289


290 Figure 2. Content and main training stages in the VR prototype.

291 **2.3. Virtual reality prototype design for training**

292 For the purposes of this training requirement, VR technology is used. In Figure 3, the environment
293 and interactions of a chemical plant training are mapped into the VR design for our prototype (as
294 illustrated in Figure 4). The VR design consists of two main components. One is the VR environment
295 which a user sees when wearing a VR headset and the second component is the VR interface for
296 interacting inside the environment.

297

298

299

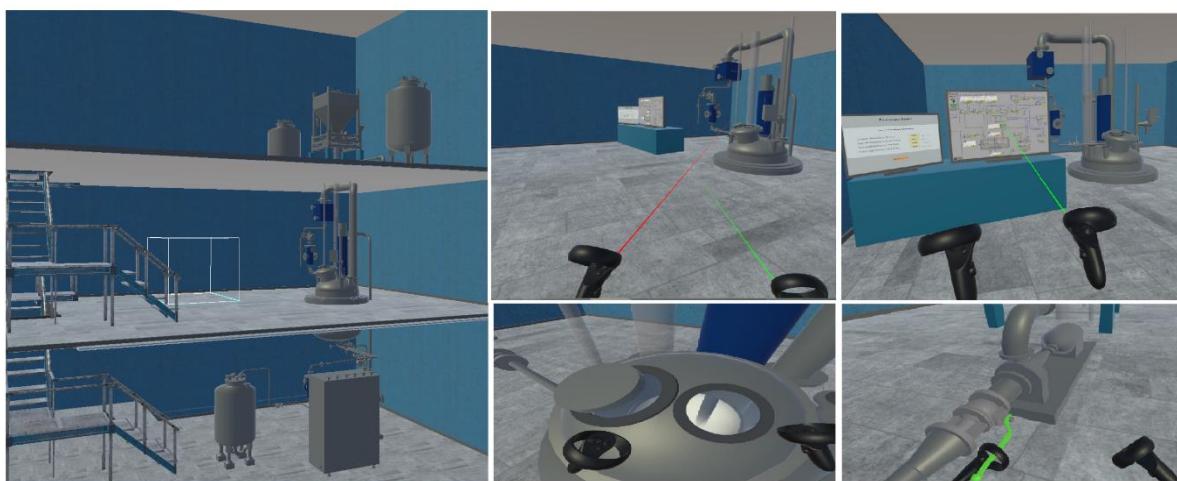
300 Figure 3. Primary VR design for the prototype of chemical operator training.

301 **1. VR environment**

302 A chemical reactor setup inside a three-floor building is designed in a VR environment to represent
303 a 3D virtual chemical plant (as shown in Figure 4). The information is taken from industrial partners to
304 represent the same situation that a trainee would experience in a real plant. The factors which make
305 a virtual environment to feel real are as follows:

306 - 3D model of a chemical reactor which is an exact model of a reactor that is used for multiple
307 chemical procedures in the real plants.

308 - Real size, colours, and textures of a chemical reactor.


309 - A 3D environment of a chemical plant with three floors connected with stairs.

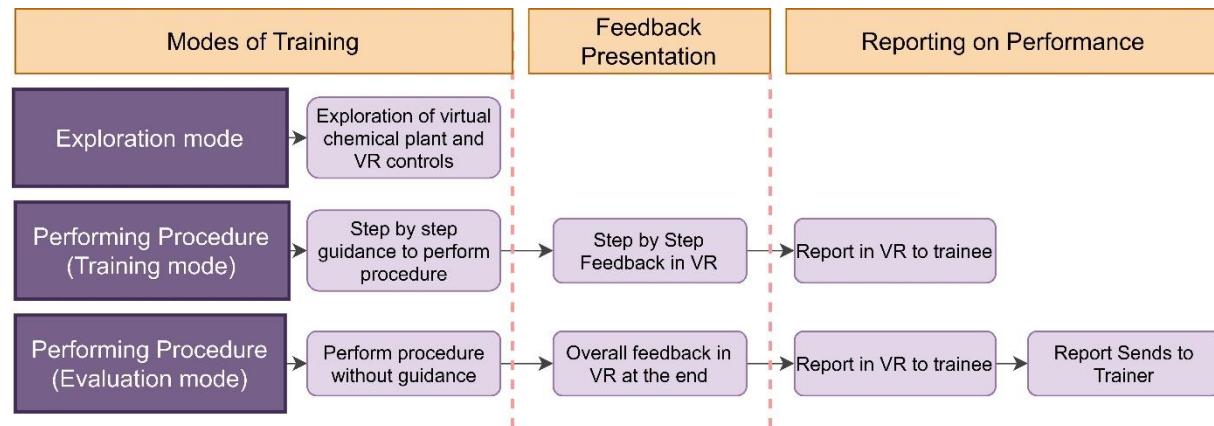
310 - A 3D model of computer screens used to control the reactor digitally.

311

312 **2. VR interface**

313 A VR interface is needed to carry out interactions and navigation inside the VR environment to
314 perform training activities with a virtual chemical reactor. These training activities include manual
315 actions (e.g., opening valves by hand) as well as interactions with the process control systems displays
316 (e.g., opening valves by computer screen). It is necessary for VR training to include these hybrid
317 interactions for simulating an exact procedure. The proposed VR design, therefore, allows the user to
318 control the virtual chemical reactor both manually and through 3D computer screens inside the VR
319 environment. The computer screens are present next to a chemical reactor and both manual and
320 digital controls are implemented. For example, a user in VR presses a button on the virtual screen to
321 start liquid feed addition to the reactor, but first, they need to open a block valve that prevents
322 accidental addition of feed into the reactor. When the user forgets to open this valve in the VR design,
323 the virtual screen will give an error indicating “no-flow” to the reactor as would be the case in a real
324 process. There are several common scenarios in which valves are opened digitally but here, we are
325 incorporating manual actions so that a user should be aware of the manual skills to be acquired. It is
326 either to open the valve by hand or just validating that a valve is opened by a computer digitally. Thus,
327 it depends on the VR training requirements on how much it can balance between manual and digital
328 actions. Regarding navigation in a virtual plant, teleportation is being used to allow the user to move
329 freely between the floors and navigate easily to the desired target. While undertaking training
330 activities, there should be few destination points in which a user can easily snap to the correct position
331 so that they can see the output and read the text clearly in the VR world.

332


333 Figure 4. Illustration of a Preliminary Version of the VR Training Prototype.

334 **2.3.1 Modes of training in VR:**

335 It should be noted that VR training can be the first VR experience for many trainees and employees.
336 They may have never used VR headsets or never encountered 'virtual reality'. So instead of confronting
337 them with all the information on VR and operations of chemical process at once, a step-by-step
338 approach is recommended. In this approach (as shown in Figure 5), training modes are structured to
339 enable progressive knowledge acquisition of VR and training features.

340 The first mode of training is to allow the user to familiarise themselves with the VR environment
341 by making them explore the VR controls and the virtual chemical reactor. It is a kind of a virtual tour
342 of the virtual chemical plant and the virtual controls. After the user becomes familiar with the
343 environment, the training mode can be initiated. In this mode, a detailed step by step guidance is
344 provided, and continuous feedback is given to the user to learn the training content. Here, the user
345 can practice this mode multiple times to achieve perfection. After this, the user enters the evaluation
346 mode. It is the same as the training mode but this time without any guidance. The overall feedback
347 and report are shown to the user only at the end of the training. In addition, this report is also sent to
348 the trainer for further evaluation. Thus, this design enables the ability to provide an environment of

349 exploration, guidance, practice, feedback, and evaluation minimizing the restrictions of cost, time, and
350 safety.

351

352 Figure 5. Modes of training to be adopted in VR prototype.

353 **2.4. Immersive learning environment design principles**

354 The development of a VR training environment for the operations of a chemical reactor requires
355 more than just the learning content and technological design. Other design elements should be
356 implemented in the training that supports both the trainee's needs and the needs of the organisation.
357 For instance, adding game-based learning elements could improve the motivation and sustain the
358 engagement of the trainees during the training. Furthermore, by implementing learning analytics into
359 the design, and by presenting them in a meaningful way to the different training environment
360 stakeholders, more informed decisions can be made related to the performance of the users. These
361 learning analytics require accurate and reliable data generated by in-game assessment - another
362 design element to be considered. The technological affordance to generate and store data during the
363 intervention provides an optimal method of assessment which can be useful for all learning
364 environment stakeholders. In the following section, design guidelines and examples are discussed for
365 how to improve VR training environments with game-based learning elements, learning analytics and
366 assessment methods.

367

368 **2.4.1. Game-based learning elements**

369 An important aspect of the design of a VR training of chemical employees is the engagement and
370 active involvement of the trainee with the training program. While VR might result in engaging the
371 trainee through an increased sense of presence in the virtual environment, the interactivity of the
372 learner within this environment is another key component for effective engagement (Checa and
373 Bustillo, 2019). Here, the emphasis is on the design of the learning experience rather than the
374 technology. Games are widely known for effectively sustaining the engagement and entertainment of
375 the player within the virtual environment. Researchers have suggested that playing games meant for
376 educational purposes leads to greater involvement with the learning experience and motivation to
377 train longer than with traditional teaching methods (Girard et al., 2013). However, other researchers
378 have mentioned that implementing VR does not always result in increased learning, nor that
379 implementing game-elements automatically makes the training motivating (Makransky et al., 2019b;
380 Wouters and van Oostendorp, 2013). It is a more complex interplay between cognitive capabilities and
381 psychological factors of the learner. In general, implementation of game-based learning elements in
382 the training of chemical employees can enforce engagement, only if the game is carefully designed to
383 support their competence to learn and their motivational needs.

384 To foster optimal engagement of the learner through game-based learning elements, one must
385 understand how to create a state of flow within the learner (Plass et al., 2015). The concept of flow
386 was coined by Csikszentmihalyi (1990) who stated that it is a “state in which people are so involved in
387 an activity that nothing else seems to matter”. In this state, the player is so engaged with the game or
388 task that they lose the sense of time and self-awareness (Garris et al., 2002). Thus, when training makes
389 use of game-based elements, controlling the flow of the learners, enhanced engagement and attention
390 on the learning material can be accomplished.

391 Achieving this state of flow is closely linked to the motivational needs of the trainee, more
392 specifically their intrinsic motivation. Intrinsic motivation arises when the trainee is engaged in the

393 activity because they perceive this as inherently enjoyable and interesting, driven by internal rewards
394 set up by the trainee themselves (Nicholson, 2015). Extrinsic motivation, on the other hand, is the
395 motivation driven by external rewards that are provided by the system, such as points and scores
396 (Nicholson, 2015). However, training activities should be developed with a focus on the trainee's
397 intrinsic motivation, because a system that mainly contains external rewards might not be sustainable
398 long term and could diminish intrinsic motivation (Deci and Ryan, 2002; Nicholson, 2015).

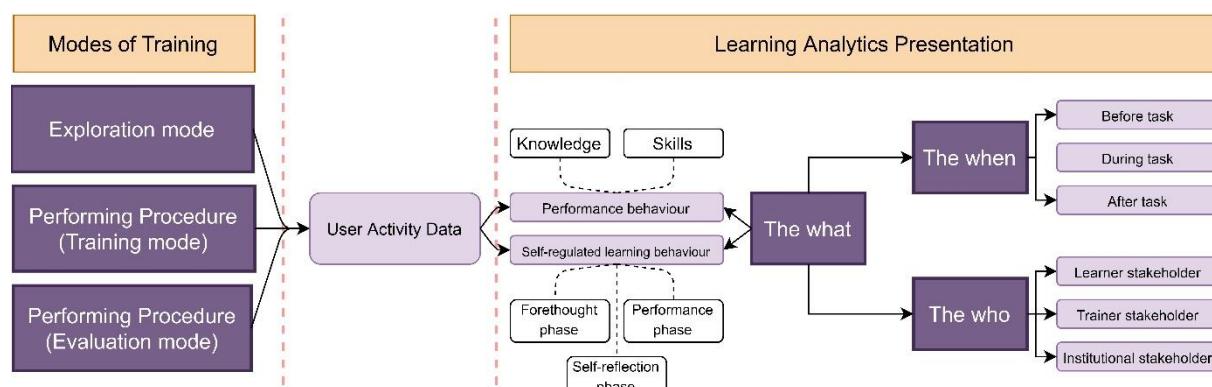
399 Researchers believe that applying game elements based on the Self-Determination Theory of Ryan
400 and Deci (2002) greatly enhances the motivational engagement during gameplay and as such also the
401 motivation to learn (Nicholson, 2015; Plass et al., 2020; Wouters et al., 2009). The theory explains that
402 intrinsic motivation is supported by the satisfaction of inherent psychological needs of competence,
403 autonomy and relatedness.

404 **Competence satisfaction** refers to the feeling of mastery or effectiveness at challenging tasks.
405 Achieving the task brings a sense of confidence within the player and strengthens the desire for more
406 challenges. This is closely related to the state of flow when players face clear, reachable goals that are
407 not too challenging in a way that causes anxiety, nor too easy in a way that increases boredom (Plass
408 et al., 2015). Game levels with increasing difficulty and variability sustain this challenge while the
409 player's skills evolve progressively. In this case, external rewards (e.g., points, badges, achievements,
410 etc.) can be used meaningfully as feedback to address the player's progress and performance (Petersen
411 et al., 2019; Plass et al., 2020). This is where accurate game assessment and informative learning
412 analytics can be used to track the player's mastery.

413 **Autonomy satisfaction** refers to personalisation and control of oneself. Allowing the player to
414 pursue choices that are meaningful to themselves sparks personal interest and enjoyment. (Makransky
415 et al., 2019a; Nicholson, 2015). A game can satisfy the autonomy needs by letting the player explore
416 the environment and make critical choices in decision-making events that could alter the outcome of
417 the game progress (Plass et al., 2020). In the context of plant operator training, decision-based

418 scenarios can be implemented that presents different dangerous outcomes based on the actions of
419 the trainee (Nakai et al., 2014).

420 **Relatedness satisfaction** refers to the feeling of connection and social relationship with significant
421 others. Engaging with other players in the same virtual setting, promotes the sense of presence and
422 supports the social needs of the player. This satisfaction is even more intensified if collaboration is
423 possible between the players, communicating and working together towards a common goal (C.-H.
424 Chen et al., 2015). Relatedness satisfaction can also be stimulated when multiplayer is absent in a game
425 by the interaction with non-player characters (Rigby and Ryan, 2011). These virtual characters,
426 controlled by the software system, can interact with the player to form a social connection. In the
427 context of the operation of a process plant, highly collaborative work environments are certainly not
428 uncommon. A team of plant operators often require high communicative and coordinating skills to
429 control the process safely (Kaber and Endsley, 1998). A training enhancing their collaborative skills in
430 a chemical plant environment can indeed be worthwhile (Ouyang et al., 2018).


431 In conclusion, to sustain the motivation and engagement of the trainee in the VR training of a chemical
432 pilot plant beyond procedural skills, one should take account of incorporating game-based learning
433 elements that support the motivational needs of competence, autonomy and relatedness. Some
434 examples that could be implemented in the training of chemical plant operators include:

435 - Game levels with increasing challenges (e.g., difficult hazardous scenarios, more complex
436 operating actions) that triggers the need for accomplishment with high performance;
437 - Multiple choices that the trainee can perform that makes their actions more meaningful (e.g.,
438 risky decisions with hazardous consequences);
439 - Social interaction either with non-player characters or through collaborative training.

440

441 **2.4.2. Learning analytics**

442 When trainees interact with the VR training environment, it often registers the trainee's activities
443 (e.g., type of assignments, mistakes, success, time to complete certain tasks). Due to recent
444 technological developments, VR training environments have the potential to utilise the activity data
445 for fostering the trainee's expertise. The VR training environment could, for example, be enhanced
446 with learning analytics features. Learning analytics is "the measurement, collection, analysis and
447 reporting of data about learners and their contexts, for the purposes of understanding and optimising
448 learning and the environments in which it occurs" (George et al., 2011). Though designing such training
449 environments may sound promising, clear guidelines for doing so are often still lacking. This hinders
450 both developers and trainers in aggregating the training data into understandable and meaningful
451 suggestions for fostering the trainees' development. The CHARMING Project is taking the first steps in
452 this direction by developing a framework for guiding the learning analytics related design decisions.
453 Based on prior research three main focus areas should be taken into account: *the what, the when, and*
454 *the who*.

455
456 Figure 6. Learning analytics presentation: *the what, the when and the who*.

457 *The what* refers to what types of learning analytics should be presented and can be divided into
458 two parts. Firstly, research suggests that learning analytics which targets performance behaviour,
459 which integrates both knowledge and skills is important. This is supported by the Van Merriënboer and
460 Kirschner (2018) strategies. An example of targeting performance behaviours is providing instant
461 feedback on mistakes by blocking trainee progress until the mistakes have been corrected

462 (Sankaranarayanan et al., 2018). By being made aware of their mistakes when they happen, trainees
463 can potentially avoid making the same mistake in the future. The second part of '*The what*' concerns
464 the targeting of self-regulated learning behaviours, which are essential to the learning process and are
465 related to how people manage their thoughts, behaviours and emotions while learning new things
466 (Panadero, 2017; Zimmerman, 2000). An example of targeting self-regulated learning behaviours with
467 learning analytics can be found in the training environment presented by Lyons et al. (2014), which
468 asked trainees to self-evaluate their performance once they completed a training task. By promoting
469 self-reflection after a training task, the trainee has the potential to better prepare themselves for what
470 they need to do next to succeed.

471 *The when* refers to the timing of learning analytics presentation and can be divided into three
472 stages: before the task, during the task and after the task. There appear to be benefits when presenting
473 learning analytics at each of these stages and in different combinations of each of these stages. For
474 example, Li et al. (2017) investigated the learning effectiveness of a serious game designed for training
475 complex manufacturing tasks and found its design had positive impacts on both self-regulated learning
476 behaviours and performance behaviours. When learning analytics are presented before a task,
477 trainees can set goals and plan their performance. When presented during a task, learning analytics
478 can assist with performance monitoring and after a task, trainees can be encouraged to reflect upon
479 their performance. *The who* refers to which learning environment stakeholders are presented with
480 learning analytics: the learner, the trainer and/or the training institution. There is evidence to support
481 the value in presenting learning analytics to both the learner and the trainer (Lee & Lee (2018)).
482 Institutional stakeholders can also benefit from being presented with learning analytics as they can
483 help inform broader policy decisions related to human resources and recruitment, planning and
484 funding (Chan et al., 2018). For example, if we can identify in advance, shortages in skilled employees
485 needed for a specific chemical process, we can adapt our training schedule in advance to ensure this
486 skill shortage is met.

487 The next step for the project is to determine the best design of learning analytics presentation for
488 the context of the VR training environment being built – a chemical reactor training for employees. To
489 successfully integrate learning analytics into the VR training environment it is vital that the assessment
490 procedures and methods are in line with expected performance behaviours.

491
492 Figure 7. Illustration of learning analytics presentation design.

493
494 **2.4.3. Implementation of assessment into VR elements**

495 In general, assessment is considered an important and vital part of the learning process since it is
496 a process of collecting, analysing, and interpreting data about learners (e.g. knowledge, skills, and
497 attitudes) to provide feedback and make improvements of their current performance (Daoudi et al.,
498 2017; Eseryel et al., 2011). Assessment is both an instrument and a process of obtaining and presenting
499 relevant information to a known objective with the different target audience (e.g., trainees, trainers,
500 institutions).

501 Several reports around the world confirm that it is important to develop an efficient and authentic
502 way of conducting an evaluation on 21st-century skills (e.g. problem-solving, teamwork, etc.), as these

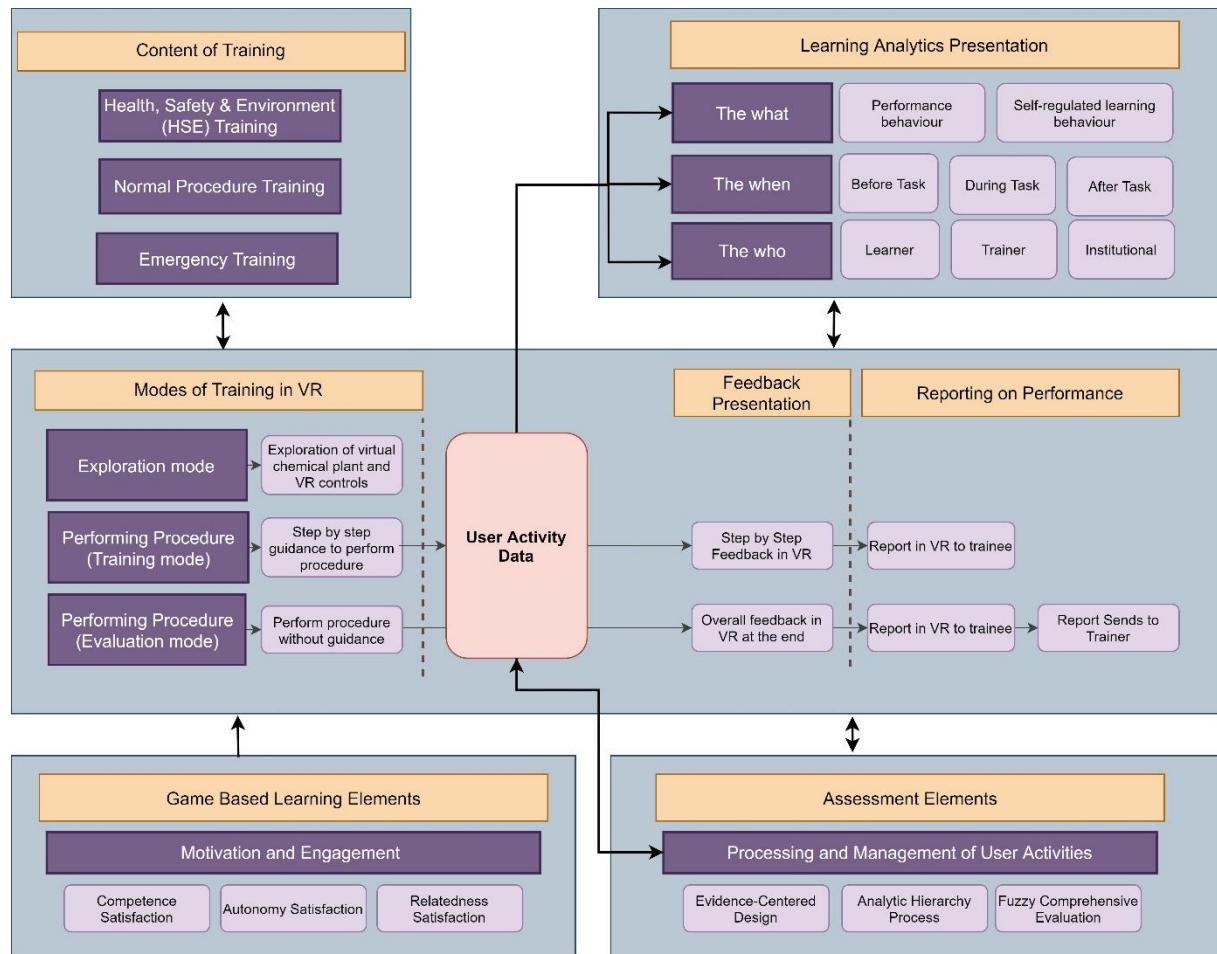
503 skills are vital to the success in a constantly evolving society (Trilling and Fadel, 2010). However, most
504 of the assessments still use a traditional paper-and-pencil format (e.g., multiple-choice and short
505 answer), which are efficient for measuring declarative knowledge but not effective for measuring the
506 above-mentioned skills. Since the success of an assessment method is based on the level of reliability
507 (i.e. consistency of assessment results across conditions) and validity (i.e. accuracy and defensibility of
508 the predicted outcomes made) of the whole course and process of analysis, it is important for the
509 researchers to go beyond the standards and begin exploring ways in which to develop new assessment
510 methods (Shute and Wang, 2016).

511 Recently, the advances in VR assessment technologies have made it possible to trace and capture
512 learner-generated data, especially their in-game actions and behaviours (Loh, 2012; Loh and Sheng,
513 2013a; Moraes et al., 2009). Since the emerging pattern of learners' behaviour within the virtual
514 environment is expressed as a function of the learners' understanding of the learning problems, this
515 collected information then can be used to reveal their corresponding knowledge and skills (Loh, 2011).
516 These learner-generated action data is analysed and transformed into real-time usable reports by
517 using information visualisation techniques.

518 One way of increasing the quality and utility of assessment in VR is to use an evidence-centred
519 design (ECD) framework According to (Mislevy et al., 2003) this framework requires assessors to: (a)
520 state the collection of claims on users' competencies, (b) establish a logical link between the task and
521 the claim, and (c) determine what tasks or situations that will generate that evidence (Mislevy et al.,
522 2003).

523 Though there can be thousands of information points available in a given data, the key is to identify
524 the most important information which can be used to rank learners according to their mastery of the
525 given subject (Loh and Sheng, 2013b). However, it may be hard for the decision-makers to identify the
526 priority of the behaviours that conform to safety rules, regulations, and operating procedures in the
527 chemical plant due to the lack of systematic methods to deal with multi-criteria problems. Therefore,

528 a scientific process is needed to rationally rank behaviour priority according to the level of expertise
529 criteria.


530 Multi-criteria decision-making is the approach that deals with designing mathematical procedures
531 for supporting the subjective scoring of performance criteria by experts (Zavadskas et al., 2014).

532 Proposed by Saaty in the 1970s, analytic hierarchy process, a type of multi-criteria decision-making, is
533 a structured method to organise and analyse decision-making problems that involve complex
534 hierarchies and multiple factors, which is based on mathematics and psychology (Saaty, 2008; Saaty
535 and Katz, 1990). In this process, experts will be asked to rate the relative importance of different factor
536 using pairwise comparison, thus, this method can provide a strong conceptual framework that allows
537 precise quantitative calculations to determine the relative importance of each criterion involved in a
538 given qualitative and/or quantitative decision-making problem (Saaty, 2008).

539 Since decision-makers usually feel more confident to give their judgement in the form of words
540 and sentences rather than in the form of numeric values, it is difficult to express these linguistic
541 variables into traditional dual logic of either yes or no (J. F. Chen et al., 2015). Hence, the fuzzy
542 comprehensive evaluation method is useful to deal with these imprecise and uncertain data.
543 Developed by Zadeh, the fuzzy comprehensive evaluation method is an assessment method that
544 applies fuzzy set theory/mathematical principles in showing a quantifiable degree of uncertainty in
545 human judgement through evaluating things and phenomenon affected by a variety of factors in a
546 system (Zadeh, 1965).

547 As the key to online evaluation process is to design the evaluation index system with reasonable
548 and objective factors weights, this VR training prototype uses analytic hierarchy process method
549 coupled with a fuzzy approach to enhance the ability to capture the uncertainties and vagueness of
550 the learner's competency perceptions expressed by the experts. Moreover, evidence-centred design
551 framework is also used to provide an evidence-based argument that connects what learners perform
552 in a chemical plant with appropriate skills and knowledge.

553 The presented multidisciplinary collaborative approach is summarized in Figure 8, showing all the
554 design elements and their interaction within the VR prototype.

555
556 Figure 8. An integrated overview of essential building blocks and features of a VR based chemical
557 operator training.

558

559 3. Conclusions

560 Training in the chemical process industry is vital because mistakes can lead to grave consequences.
561 However, current training methods seem to have limitations regarding the format in which the
562 information is transmitted to the trainee, motivational design and hazardous situation training.
563 Furthermore, the high cost of the training centres and the time-consuming methodologies, are
564 characteristics that need improvement.

565 VR technologies are rapidly increasing in popularity and have been shown to be effective for
566 workforce training, especially for high-risk professions, such as military, medical, aviation and mining
567 industry. However, there is currently a shortage of evidence that VR training in the chemical industry
568 is effective. Using VR technology for the training of employees in the chemical process industry could
569 be a solution to the weaknesses of traditional training methods.

570 We set out to design a VR training environment for the chemical process industry which
571 incorporates elements of design from a multidisciplinary perspective that requires a close
572 collaboration of chemical engineers, a chemist, a computer science specialist, and an educationalist.
573 This collaboration is necessary because designing and developing a VR training requires design
574 elements that optimally support the needs of the trainee and the needs of the training environment
575 stakeholders. When these needs are not met, the VR training could be rendered ineffective or not
576 optimised for its purpose.

577 To design effective training environments, the learning content and virtual environment are
578 carefully selected. The training will educate chemical operators on how to operate a universal chemical
579 batch reactor with high attention to safe operation and will include emergency cases. Accurate
580 development of the VR environment, interfaces and interaction, that resembles the real chemical
581 plant, ensures high immersion for the trainee during the training.

582 Additionally, the design of the VR training environment makes use of design elements based on
583 key principles of game-based learning, learning analytics and assessment methods. Game-based
584 learning elements can be implemented to sustain engagement and to promote intrinsic motivation of
585 the trainee by complementing their needs of competence, autonomy and relatedness. Furthermore,
586 we can utilise learning analytics to support all stakeholders in making decisions related to the
587 performance of the trainee, by taking into account the focus domains of *the what, the when, and the*
588 *who*. Finally, assessment methods, such as evidence-centred design, analytic hierarchy process, and

589 fuzzy comprehensive evaluation can be used to capture and process generated data during the training
590 with a high level of reliability and validity.

591 In the end, we have provided a theoretical framework that set a baseline for the development of
592 virtual training experiences in the future.

593

594 **4. Future work**

595 The Work Package 3 team of the CHARMING project is working collectively towards a functional
596 VR training for operators in the chemical industry. Future work will involve implementing key design
597 principles of game-based learning, learning analytics and assessment. We are expecting to have a
598 working VR prototype, that will be evaluated and tested with operators and apprentices from the
599 chemical industry. The CHARMING project involves several European institutions, industrial
600 participants are particularly important to design and our ability to test the prototype, as they provide
601 an industrial perspective, expertise on chemical technology, and requirements on content training.
602 The beneficiary companies Merck KGaA⁴ and Arkema⁵, and the partner company ACTA⁶, located in
603 Germany, France and Belgium respectively, are planned to be included in the testing phase of the
604 project planned for the year 2021. The evaluation and testing phase will provide data that will be used
605 for the validation of the first design guidelines based on empirical research related to learning
606 analytics, assessment and game-based learning. The project will provide conclusions regarding the
607 effectiveness and efficiency of the VR training experience compared to traditional classroom training
608 as well as digital-based platforms training in the chemical industry. An iterative approach will take

⁴ <https://www.merckgroup.com/en>

⁵ <https://www.arkema.com/en/>

⁶ <https://www.acta-vzw.be/nl/home.arcx>

609 place during the year 2021, targeting a validated VR experience by the end of the CHARMING project
610 in the year 2022.

611 **5. Acknowledgements**

612 This project has received funding from the European Union's EU Framework Programme for
613 Research and Innovation Horizon 2020 under Grant Agreement 812716. This publication reflects only
614 the authors' view exempting the community from any liability. Project website: <https://charming->
615 etn.eu/.

616 Special thanks to the CHARMING supervisory board for their help in the publication process.

617 **6. References**

618 Antonovsky, A., Pollock, C., Straker, L., 2014. Identification of the Human Factors Contributing to
619 Maintenance Failures in a Petroleum Operation. *Hum. Factors* 56, 306–321.
620 <https://doi.org/10.1177/0018720813491424>

621 Bednarz, T., James, C., Widzyk-Capehart, E., Caris, C., Alem, L., 2015. Distributed Collaborative
622 Immersive Virtual Reality Framework for the Mining Industry, in: *Machine Vision and*
623 *Mechatronics in Practice*. Springer Berlin Heidelberg, pp. 39–48. <https://doi.org/10.1007/978-3->
624 [662-45514-2_4](https://doi.org/10.1007/978-3-662-45514-2_4)

625 Berg, L.P., Vance, J.M., 2017. Industry use of virtual reality in product design and manufacturing: a
626 survey. *Virtual Real.* 21, 1–17. <https://doi.org/10.1007/s10055-016-0293-9>

627 Bhusari, A., Goh, A., Ai, H., Sathanapally, S., Jalal, M., Mentzer, R.A., 2020. Process safety incidents
628 across 14 industries. *Process Saf. Prog.* n/a, e12158. <https://doi.org/10.1002/prs.12158>

629 Chan, T., Sebok-Syer, S., Thoma, B., Wise, A., Sherbino, J., Pusic, M., 2018. Learning Analytics in Medical
630 Education Assessment: The Past, the Present, and the Future. *AEM Educ. Train.* 2, 178–187.
631 <https://doi.org/10.1002/aet2.10087>

632 Checa, D., Bustillo, A., 2019. A review of immersive virtual reality serious games to enhance learning
633 and training. *Multimed. Tools Appl.* 79, 5501–5527. <https://doi.org/10.1007/s11042-019-08348->
634 9

635 Chen, C.-H., Wang, K.-C., Lin, Y.-H., 2015. The Comparison of Solitary and Collaborative Modes of
636 Game-based Learning on Students' Science Learning and Motivation. *J. Educ. Technol. Soc.* 18,
637 237–248.

638 Chen, J.F., Hsieh, H.N., Do, Q.H., 2015. Evaluating teaching performance based on fuzzy AHP and
639 comprehensive evaluation approach. *Appl. Soft Comput. J.* 28, 100–108.
640 <https://doi.org/10.1016/j.asoc.2014.11.050>

641 Colombo, S., Golzio, L., 2016. The Plant Simulator as viable means to prevent and manage risk through
642 competencies management: Experiment results. *Saf. Sci.* 84, 46–56.

643 <https://doi.org/10.1016/j.ssci.2015.11.021>

644 Cook, R., 2010. Interpreting Piping and Instrumentation Diagrams - Symbology. AICHE.

645 Csikszentmihalyi, M., Abuhamdeh, S., Nakamura, J., others, 1990. Flow: The Psychology of Optimal
646 Experience. New York: Harper & Row.

647 Daoudi, I., Travnouze, E., Chebil, R., Espinasse, B., Chaari, W.L., 2017. Learners' Assessment and
648 Evaluation in Serious Games: Approaches and Techniques Review, in: Information Systems for
649 Crisis Response and Management in Mediterranean Countries: 4th International Conference. pp.
650 147–153. https://doi.org/10.1007/978-3-319-67633-3_12

651 Deci, E.L., Ryan, R.M., 2002. Handbook of self-determination research. Handb. self-determination Res.

652 Dede, C., 2009. Immersive interfaces for engagement and learning. Science (80-.).
653 <https://doi.org/10.1126/science.1167311>

654 ECHA, 2020a. Substance information: Butyllithium [WWW Document]. URL
655 <https://echa.europa.eu/substance-information/-/substanceinfo/100.003.363> (accessed
656 7.31.20).

657 ECHA, 2020b. Guidance on the compilation of safety data sheets [WWW Document]. URL
658 https://echa.europa.eu/documents/10162/23047722/guidance_sds_v40_peg_en.pdf/42dc8be
659 5-b033-3062-8ee8-6d3a1b8dcb99 (accessed 7.31.20).

660 Eseryel, D., Ifenthaler, D., Ge, X., 2011. Alternative Assessment Strategies for Complex Problem Solving
661 in Game-Based Learning Environments, in: Multiple Perspectives on Problem Solving and
662 Learning in the Digital Age. Springer New York, New York, NY, pp. 159–178.
663 https://doi.org/10.1007/978-1-4419-7612-3_11

664 Formosa, N.J., Morrison, B.W., Hill, G., Stone, D., 2018. Testing the efficacy of a virtual reality-based
665 simulation in enhancing users' knowledge, attitudes, and empathy relating to psychosis. Aust. J.
666 Psychol. 70, 57–65. <https://doi.org/10.1111/ajpy.12167>

667 Gallegos-Nieto, E., Medellín-Castillo, H.I., González-Badillo, G., Lim, T., Ritchie, J., 2017. The analysis
668 and evaluation of the influence of haptic-enabled virtual assembly training on real assembly
669 performance. Int. J. Adv. Manuf. Technol. 89, 581–598. <https://doi.org/10.1007/s00170-016-9120-4>

671 Garcia Fracaro, S., Chan, P., Gallagher, T., Tehreem, Y., Toyoda, R., Bernaerts, K., Glassey, J., Pfeiffer,
672 T., Slof, B., Wachsmuth, S., Wilk, M., 2021. Towards design guidelines for virtual reality training
673 for the chemical industry. Educ. Chem. Eng. 36, 12–23.
674 <https://doi.org/10.1016/j.ece.2021.01.014>

675 Garcia Fracaro, S., Wilk, M., Glassey, J., Bernaerts, K., 2020. Immersive experiences for the training of
676 operators in the process industry: a Systematic Literature Review. in submission.

677 Garris, R., Ahlers, R., Driskell, J.E., 2002. Games, motivation, and learning: A research and practice
678 model. Simul. Gaming 33, 441–467. <https://doi.org/10.1177/1046878102238607>

679 George, S., Gasevic, D., Haythornthwaite, C., Dawson, S., Buckingham Shum, S., Ferguson, R., Duval, E.,
680 Verbert, K., Baker, R., 2011. Open learning analytics an integrated & modularized platform.pdf.

681 Girard, C., Ecalle, J., Magnan, A., 2013. Serious games as new educational tools: how effective are they?
682 A meta-analysis of recent studies. J. Comput. Assist. Learn. 29, 207–219.
683 <https://doi.org/10.1111/j.1365-2729.2012.00489.x>

684 Harrington, C.M., Kavanagh, D.O., Quinlan, J.F., Ryan, D., Dicker, P., O'Keeffe, D., Traynor, O., Tierney,
685 S., 2018. Development and evaluation of a trauma decision-making simulator in Oculus virtual
686 reality. *Am. J. Surg.* 215, 42–47. <https://doi.org/10.1016/j.amjsurg.2017.02.011>

687 Ho, N., Wong, P.M., Chua, M., Chui, C.K., 2018. Virtual reality training for assembly of hybrid medical
688 devices. *Multimed. Tools Appl.* 77, 30651–30682. <https://doi.org/10.1007/s11042-018-6216-x>

689 Huang, H.M., Rauch, U., Liaw, S.S., 2010. Investigating learners' attitudes toward virtual reality learning
690 environments: Based on a constructivist approach. *Comput. Educ.* 55, 1171–1182.
691 <https://doi.org/10.1016/j.compedu.2010.05.014>

692 Huang, T.C., Chen, C.C., Chou, Y.W., 2016. Animating eco-education: To see, feel, and discover in an
693 augmented reality-based experiential learning environment. *Comput. Educ.* 96, 72–82.
694 <https://doi.org/10.1016/j.compedu.2016.02.008>

695 Ifenthaler, D., Gibson, D., Dobozy, E., 2018. Informing learning design through analytics: Applying
696 network graph analysis. *Australas. J. Educ. Technol.* 34, 117–132.
697 <https://doi.org/10.14742/ajet.3767>

698 Jasoren, 2018. What Virtual Reality Is and How It Works: The Complete Guide [WWW Document]. URL
699 <https://jasoren.com/what-virtual-reality-is-and-how-it-works-the-complete-guide/> (accessed
700 6.11.20).

701 Jung, S., Woo, J., Kang, C., 2020. Analysis of severe industrial accidents caused by hazardous chemicals
702 in South Korea from January 2008 to June 2018. *Saf. Sci.* 124, 104580.
703 <https://doi.org/https://doi.org/10.1016/j.ssci.2019.104580>

704 Kaber, D.B., Endsley, M.R., 1998. Team situation awareness for process control safety and
705 performance. *Process Saf. Prog.* 17, 43–48. <https://doi.org/10.1002/prs.680170110>

706 Kang, Sunyoung, Kang, Seungae, 2019. The study on the application of virtual reality in adapted
707 physical education. *Cluster Comput.* 22, 2351–2355. <https://doi.org/10.1007/s10586-018-2254-4>

709 Kluge, A., Nazir, S., Manca, D., 2014. Advanced Applications in Process Control and Training Needs of
710 Field and Control Room Operators. *IIE Trans. Occup. Ergon. Hum. Factors* 2, 121–136.
711 <https://doi.org/10.1080/21577323.2014.920437>

712 Lee, G.I., Lee, M.R., 2018. Can a virtual reality surgical simulation training provide a self-driven and
713 mentor-free skills learning? Investigation of the practical influence of the performance metrics
714 from the virtual reality robotic surgery simulator on the skill learning and asso. *Surg. Endosc.* 32,
715 62–72. <https://doi.org/10.1007/s00464-017-5634-6>

716 Lee, H.G., Chung, S., Lee, W.H., 2013. Presence in virtual golf simulators: The effects of presence on
717 perceived enjoyment, perceived value, and behavioral intention. *New Media Soc.* 15, 930–946.
718 <https://doi.org/10.1177/1461444812464033>

719 Lee, J., Cameron, I., Hassall, M., 2019. Improving process safety: What roles for Digitalization and
720 Industry 4.0? *Process Saf. Environ. Prot.* 132, 325–339.
721 <https://doi.org/https://doi.org/10.1016/j.psep.2019.10.021>

722 Li, K., Hall, M., Bermell-Garcia, P., Alcock, J., Tiwari, A., González-Franco, M., 2017. Measuring the
723 Learning Effectiveness of Serious Gaming for Training of Complex Manufacturing Tasks. *Simul. Gaming* 48, 770–790. <https://doi.org/10.1177/1046878117739929>

725 Liu, X., Zhang, J., Hou, G., Wang, Z., 2018. Virtual Reality and Its Application in Military, in: IOP

726 Conference Series: Earth and Environmental Science. p. 32155. <https://doi.org/10.1088/1755-1315/170/3/032155>

727

728 Loh, C.S., 2012. Information Trails: In-Process Assessment of Game-Based Learning, in: Ifenthaler, D.,
729 Eseryel, D., Ge, X. (Eds.), *Assessment in Game-Based Learning: Foundations, Innovations, and*
730 *Perspectives*. Springer New York, New York, NY, pp. 123–144. https://doi.org/10.1007/978-1-4614-3546-4_8

731

732 Loh, C.S., 2011. Using in situ data collection to improve the impact and return of investment of game-
733 based learning. *Proc. 61st Int. Counc. Educ. Media XIII Int. Symp. Comput. Educ. Jt. Conf.* 801–
734 811.

735 Loh, C.S., Sheng, Y., 2013a. Measuring the (dis-)similarity between expert and novice behaviors as
736 serious games analytics. *Educ. Inf. Technol.* 20, 5–19. <https://doi.org/10.1007/s10639-013-9263-y>

737

738 Loh, C.S., Sheng, Y., 2013b. Performance metrics for serious games: Will the (real) expert please step
739 forward? *Proc. CGAMES 2013 USA - 18th Int. Conf. Comput. Games AI, Animat. Mobile, Interact.*
740 *Multimedia, Educ. Serious Games* 202–206. <https://doi.org/10.1109/CGames.2013.6632633>

741 Lövquist, E., Shorten, G., Aboulafia, A., 2012. Virtual reality-based medical training and assessment:
742 The multidisciplinary relationship between clinicians, educators and developers. *Med. Teach.* 34,
743 59–64. <https://doi.org/10.3109/0142159X.2011.600359>

744 Lyons, R., Johnson, T.R., Khalil, M.K., Cendán, J.C., 2014. The impact of social context on learning and
745 cognitive demands for interactive virtual human simulations. *PeerJ* 2, e372.
746 <https://doi.org/10.7717/peerj.372>

747 Makransky, G., Borre-Gude, S., Mayer, R.E., 2019a. Motivational and cognitive benefits of training in
748 immersive virtual reality based on multiple assessments. *J. Comput. Assist. Learn.* 35, 691–707.
749 <https://doi.org/10.1111/jcal.12375>

750 Makransky, G., Terkildsen, T.S., Mayer, R.E., 2019b. Adding immersive virtual reality to a science lab
751 simulation causes more presence but less learning. *Learn. Instr.* 60, 225–236.
752 <https://doi.org/10.1016/j.learninstruc.2017.12.007>

753 Manca, D., Brambilla, S., Colombo, S., 2013. Bridging between Virtual Reality and accident simulation
754 for training of process-industry operators. *Adv. Eng. Softw.* 55, 1–9.
755 <https://doi.org/10.1016/j.advengsoft.2012.09.002>

756 Manca, D., Nazir, S., Lucernoni, F., Colombo, S., 2012a. Performance Indicators for the Assessment of
757 Industrial Operators.

758 Manca, D., Totaro, R., Nazir, S., Brambilla, S., Colombo, S., 2012b. Virtual and Augmented Reality as
759 Viable Tools to Train Industrial Operators, in: *Computer Aided Chemical Engineering*. Elsevier
760 B.V., pp. 825–829. <https://doi.org/10.1016/B978-0-444-59507-2.50157-8>

761 MARIE SKŁODOWSKA-CURIE ACTIONS, 2018. European Training Network for Chemical Engineering
762 Immersive Learning [WWW Document]. URL <https://charming-etn.eu/> (accessed 12.17.20).

763 Mazuryk, T., Gervautz, M., 1999. Virtual Reality History, Applications, Technology and Future.

764 Merck KGaA, 2012. Safety Data Sheet Butyllithium. Mater. Saf. Data Sheet.

765 Mikropoulos, T.A., Natsis, A., 2011. Educational virtual environments: A ten-year review of empirical
766 research (1999-2009). *Comput. Educ.* 56, 769–780.
767 <https://doi.org/10.1016/j.compedu.2010.10.020>

768 Mislevy, R.J., Steinberg, L.S., Almond, R.G., 2003. Focus Article: On the Structure of Educational
769 Assessments. Meas. Interdiscip. Res. Perspect. 1, 3–62.
770 https://doi.org/10.1207/S15366359MEA0101_02

771 Mól, A.C.A., Jorge, C.A.F., Couto, P.M., Augusto, S.C., Cunha, G.G., Landau, L., 2009. Virtual
772 environments simulation for dose assessment in nuclear plants. Prog. Nucl. Energy 51, 382–387.
773 <https://doi.org/10.1016/j.pnucene.2008.04.003>

774 Moraes, R.M. De, Machado, S., Souza, L.C. De, 2009. Online Assessment of Training in Virtual Reality
775 Simulators Based on General Bayesian Networks 1–5.

776 Nakai, A., 2015. Scenario Development for Safety Training/Education System in Chemical Plant. Sci. J.
777 Educ. 3, 68. <https://doi.org/10.11648/j.sjedu.20150303.14>

778 Nakai, A., Kaihata, Y., Suzuki, K., 2014. The Experience-Based Safety Training System Using Vr
779 Technology for Chemical Plant. Int. J. Adv. Comput. Sci. Appl. 5, 63–67.
780 <https://doi.org/10.14569/ijacsa.2014.051111>

781 Nakai, A., Suzuki, K., 2016. Instructional information system using AR technology for chemical plants.
782 Chem. Eng. Trans. 53, 199–204. <https://doi.org/10.3303/CET1653034>

783 Nazir, S., 2014. How a Plant Simulator can Improve Industrial Safety. Process Saf. Prog. 34.
784 <https://doi.org/DOI 10.1002/prs.11714>

785 Nazir, S., Colombo, S., Manca, D., 2013. Minimizing the Risk in the Process Industry by Using a Plant
786 Simulator: a Novel Approach. Chem. Eng. Trans. 32, 109–114.
787 <https://doi.org/10.3303/CET1332019>

788 Nazir, S., Sorensen, L., Øvergård, K., Manca, D., 2014. How Distributed Situation Awareness Influences
789 Process Safety, in: Chemical Engineering Transactions. <https://doi.org/10.3303/CET1436069>

790 Nicholson, S., 2015. A RECIPE for Meaningful Gamification, in: Gamification in Education and Business.

791 Norton, C., Cameron, I., Crosthwaite, C., Balliu, N., Tade, M., Shallcross, D., Hoadley, A., Barton, G.,
792 Kavanagh, J., 2008. Development and deployment of an immersive learning environment for
793 enhancing process systems engineering concepts. Educ. Chem. Eng. 3, 75–83.
794 <https://doi.org/10.1016/j.ece.2008.04.001>

795 Nunes De Vasconcelos, G., Malard, M.L., Van Stralen, M., Campomori, M., Canavezzi De Abreu, S.,
796 Lobosco, T., Gomes, I.F., Duarte, L., Lima, C., 2019. Do we still need CAVEs?, Sousa, JP, Xavier, JP
797 and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution -
798 Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto,
799 Porto, Portugal, 11-13 September 2019, pp. 133–142.

800 Ouyang, S.-G., Wang, G., Yao, J.-Y., Zhu, G.-H.-W., Liu, Z.-Y., Feng, C., 2018. A Unity3D-based interactive
801 three-dimensional virtual practice platform for chemical engineering. Comput. Appl. Eng. Educ.
802 26, 91–100. <https://doi.org/10.1002/cae.21863>

803 Panadero, E., 2017. A Review of Self-regulated Learning: Six Models and Four Directions for Research.
804 Front. Psychol. 8. <https://doi.org/10.3389/fpsyg.2017.00422>

805 Petersen, S.A., Oliveira, M., Hestetun, K., Sørensen, A.Ø., 2019. ALF - a Framework for Evaluating
806 Accelerated Learning in Industry. Int. J. Serious Games 6, 81–99.
807 <https://doi.org/10.17083/ijsg.v6i3.314>

808 Plass, J.L., Homer, B.D., Kinzer, C.K., 2015. Foundations of Game-Based Learning. Educ. Psychol. 50,
809 258–283. <https://doi.org/10.1080/00461520.2015.1122533>

810 Plass, J.L., Mayer, R.E., Homer, B.D., 2020. Handbook of game-based learning. The MIT Press,
811 Cambridge, Massachusetts.

812 Rathman, T., Schwindeman, J.A., 2014. Preparation, properties, and safe handling of commercial
813 organolithiums: Alkyllithiums, lithium sec-organoamides, and lithium alkoxides. Org. Process Res.
814 Dev. 18, 1192–1210. <https://doi.org/10.1021/op500161b>

815 Rigby, S., Ryan, R.M., 2011. Glued to games: How video games draw us in and hold us spellbound.
816 Glued to games How video games Draw us hold us spellbound., New directions in media.

817 Saaty, T.L., 2008. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1, 83.
818 <https://doi.org/10.1504/IJSSCI.2008.017590>

819 Saaty, T.L., Katz, J.M., 1990. How to make a decision: The Analytic Hierarchy Process, European Journal
820 of Operational Research.

821 Sankaranarayanan, G., Wooley, L., Hogg, D., Dorozhkin, D., Olasky, J., Chauhan, S., Fleshman, J.W., De,
822 S., Scott, D., Jones, D.B., 2018. Immersive virtual reality-based training improves response in a
823 simulated operating room fire scenario. Surg. Endosc. 32, 3439–3449.
824 <https://doi.org/10.1007/s00464-018-6063-x>

825 Sherman, W.R., Craig, A.B., 2003. The Virtual Reality Experience, in: Understanding Virtual Reality.
826 Morgan Kaufmann, pp. 381–411. <https://doi.org/10.1016/b978-155860353-0/50008-2>

827 Shute, V., Wang, L., 2016. Assessing and Supporting Hard-to-Measure Constructs in Video Games.
828 Handb. Cogn. Assess. 535–562. <https://doi.org/10.1002/9781118956588.ch22>

829 Srinivasan, R., Srinivasan, B., Iqbal, M.U., Nemet, A., Kravanja, Z., 2019. Recent developments towards
830 enhancing process safety: Inherent safety and cognitive engineering. Comput. Chem. Eng. 128,
831 364–383. <https://doi.org/https://doi.org/10.1016/j.compchemeng.2019.05.034>

832 TechCrunch, 2014. A Brief History Of Oculus [WWW Document]. URL
833 <https://techcrunch.com/2014/03/26/a-brief-history-of-oculus/> (accessed 6.11.20).

834 Trilling, B., Fadel, C., 2010. 21St Century Skills: Learning for Life in Our Times. Choice Rev. Online 47,
835 47-5788-47-5788. <https://doi.org/10.5860/choice.47-5788>

836 Van Merriënboer, J., Kirschner, P.A., 2018. Ten steps to complex learning : a systematic approach to
837 four-component instructional design, 3rd ed. Routledge.

838 Wilk, M., Rommel, S., Liauw, M.A., Schinke, B., Zanthoff, H.W., 2020. Education 4.0: Challenges for
839 Education and Advanced Training. Chemie-Ingenieur-Technik 983–992.
840 <https://doi.org/10.1002/cite.202000022>

841 Wouters, P., van der Spek, E.D., van Oostendorp, H., 2009. Current Practices in Serious Game Research,
842 in: Games-Based Learning Advancements for Multi-Sensory Human Computer Interfaces. {IGI}
843 Global, pp. 232–250. <https://doi.org/10.4018/978-1-60566-360-9.ch014>

844 Wouters, P., van Oostendorp, H., 2013. A meta-analytic review of the role of instructional support in
845 game-based learning. Comput. Educ. 60, 412–425.
846 <https://doi.org/10.1016/j.compedu.2012.07.018>

847 Zadeh, L.A., 1965. Fuzzy sets. Inf. Control 8, 338–353. [https://doi.org/10.1016/S0019-9958\(65\)90241-X](https://doi.org/10.1016/S0019-9958(65)90241-X)

849 Zavadskas, E.K., Turskis, Z., Kildiene, S., 2014. State of art surveys of overviews on MCDM/MADM
850 methods. Technol. Econ. Dev. Econ. 20, 165–179.

851 <https://doi.org/10.3846/20294913.2014.892037>

852 Zhang, H., 2017. Head-mounted display-based intuitive virtual reality training system for the mining
853 industry. *Int. J. Min. Sci. Technol.* 27, 717–722. <https://doi.org/10.1016/j.ijmst.2017.05.005>

854 Zimmerman, B.J., 2000. Attaining Self-Regulation, in: *Handbook of Self-Regulation*. Elsevier, pp. 13–39.
855 <https://doi.org/10.1016/B978-012109890-2/50031-7>

856