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Abstract—Industry 4.0 focused on digitalization to make ma-
chines work together effectively. Industry 5.0 will put more
emphasis on the human worker, whose cognitive abilities and
adaptability are invaluable to the factory of the future. We
expect a lot from the Operator 5.0 in terms of skills and
knowledge, hence research on cognitive assistance systems that
can help manage the cognitive load by providing automated
digital instructions and production information is highly relevant.
To achieve a certain standard, we look at previous work on
instruction quality and put it into perspective with insights from
UX and instructional design. We argue, that many frameworks
lack an objective measure to evaluate and monitor instruction
quality. However, assistance systems in Industry 5.0 are designed
to generate instructions automatically and adapt them to changes
in real-time. Hence, the systems need a way to verify the
quality of the produced instructions in order to work effectively
and avoid errors. Focusing on assembly tasks, we first identify
responsibilities for quality issues by assigning them to different
components of an assistance system, before identifying initial
objective metrics for the system to rely on.

Index Terms—Industry 5.0, work instructions, assistance sys-
tems, quality management

I. INTRODUCTION

The manufacturing industry is undergoing a significant
transformation driven by advancements in automation, artifi-
cial intelligence, and Industry 4.0 as well as 5.0. Among other
factors, this transformation is marked by increasing complexity
in manufacturing machines and factories, according to Mark,
Rauch, and Matt [1]. This has major implications for the
future worker. Romero, Bernus, Noran, et al. [2] coined the
term ”Operator 4.0”, which is a framework of eight possible
scenarios. Each one describes how the previous technological
developments affect the human worker. For instance, the
”smarter operator” scenario has the worker thrive on the
vast amount of information available through smartphones,
personal assistants, and computers. While the ”healthy oper-
ator” scenario sees the worker utilizing wearable devices to
track the physiological status and the ”super-strength operator”
scenario imagines workers using exoskeletons to provide more
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”strength” to the user. Thorvald, Berglund, and Romero [3]
conclude that the future human worker must interact effec-
tively with diverse technologies, manage large amounts of
information, transfer knowledge seamlessly between virtual
and physical environments, and take responsibility for their
own and their colleagues’ ongoing skill development. Ac-
cording to Mark, Rauch, and Matt [1], the future role of
the human operator is that of a knowledge worker, with
skill requirements approaching those of engineers. Burggräf,
Dannapfel, Adlon, et al. [4] further emphasize the importance
of adaptability and cognitive abilities for workers in this
context. Moreover, the evolution of Industry 4.0 towards
Industry 5.0 is expected to further enhance human-machine
collaboration. Maddikunta, Pham, B, et al. [5] state that
Industry 5.0, in its current form, is about the collaboration of
the “unique creativity of human experts” and “powerful, smart,
and accurate machinery”. They further detail that Industry
5.0 will significantly increase manufacturing efficiency and
enable constant monitoring. In addition, repetitive tasks are
meant to be done by robots or machines, while the cognitive
tasks are assigned to humans. Finally, they claim that the
production processes will be automated to a large degree, since
real-time data of the machines will be available to capable
human experts [5]. Ultimately, the goal is to leverage real-
time data to create a complete, seamless digital representation
of the production plant, including the workstations and even
the worker. To achieve this, the workplace of the future should
be adaptive, in order to accommodate for mass personalization
as well as the individuality of the worker.

To address these challenges, digital instructions and assis-
tance systems have emerged as a promising solution. Mark,
Rauch, and Matt [6] define worker assistance systems as
technical tools that support workers without replacing them,
enhancing their tasks without posing risks. These systems not
only provide real-time guidance but also serve as valuable
training tools, as noted by Yigitbas, Sauer, and Engels [7].
The implementation of such systems aims to achieve several
key goals, as outlined by König and Winkler [8]:
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• Ensure quality
• Increase productivity
• Improve ergonomics
• Control variance
Despite these visions for the future of manufacturing, many

factories continue to rely on traditional paper-based instruc-
tions, which presents several challenges. Tsutsumi, Gyulai,
Takács, et al. [9] highlight the inefficiencies of paper-based
methods, which require expertise, lead to time loss, and strain
memory. These limitations often result in operators neglecting
instructions and relying on their knowledge [10].

We argue that an assistance system designed for Industry
5.0 needs to be able to create high quality work instructions
automatically, as it reacts to real-time data created by the
overall infrastructure.

Designing an assistance system and consequently rolling it
out to the shop floor is a complex project. It needs to be
ensured that the assistance system is properly connected to
the necessary infrastructure and it needs to be tested on pilot
stations to gather feedback from workers via user studies. The
results of the user study inform the next iteration and so on.
We acknowledge that a human-centric design philosophy is
vital, especially for assistance systems that are to be used by
human workers, however, we argue that there are some ob-
jective measures a high-quality instruction should adhere, too.
Moreover, an assistance system that is supposed to create work
instructions automatically, needs more specific guidelines than
a human curator. ”Make it easy to understand”, is already a
fuzzy request, even for a human, but an automated system
needs well-defined, measurable rules. Objective measurements
of work instructions that do not rely on user surveys would
also speed up the iterative design process as the success can
be evaluated by the achieved metrics of the system. Tradi-
tionally, systems use an experimental setup to track metrics
like ”assembly time, mental workload, and error rates”[11].
Gelec and Lindenlaub [12] used eye-tracking to assess the
human behavior at an assistance system, which is an approach
that is gaining traction. We argue that objective measurements
would ensure minimum standards, even as the technologies
or media used to provide work instructions may change.
Similarly, objective metrics make it easier to compare different
systems or even the very same system over different iterations.
Finally, objective measures in addition to subjective measures
may yield synergistic effects, like recognizing patterns of these
different metrics. We acknowledge that large language models
may handle the ”fuzziness” of such a request, but even so we
argue that there is a need to create metrics that can actually
reflect how well the instruction fits within the criteria given,
to act as a ”failsafe” and return the work instruction for
adjustment back to the system for refinement if it fails set
thresholds of some metrics. In the next section (Section II) we
will first cover the related work in order to deduce possible
objective metrics of work instructions. Still, there is certainly
a need to strike a balance between objective and subjective
metrics. Chen, Paas, and Sweller [13] argue that the objectivity
of objective measures is already a flawed characteristic to

begin with, as the receiver of information is the variable that
defines the level of complexity of information, due to the
subjective nature of complexity. Therefore, in Section III we
will map attributes of work instructions to the different entities
of the assistance system, including the user, so that we can
grasp which attributes actually benefit from objective metrics.
Section IV will include a short summary and recommendations
for future research aimed at validating our approach.

II. RELATED WORK

A. Types of assistance systems

Worker assistance systems can be categorized into three
groups, based on the area of assistance they are aiming at.
These categories are informational, physical, and cognitive
[8]. Sensory assistance systems are able to sense important
characteristics of the work and in turn provide directions,
based on the sensor input. Physical assistance systems support
the worker on a physical level. This might be a direct personal
assistance, such as an exoskeleton that helps the worker handle
larger weights, or an accompanying robot carrying tools.
Finally, there are cognitive assistance system, which primarily
act to reduce the cognitive load of the worker by enhanc-
ing ”the key phases of human information processing sys-
tems” [12]. When a worker interfaces with a digital instruction
system, the worker may not need to think about the next steps,
because the digital instructions are provided. Therefore, the
worker can focus more resources on the individual operations.

B. Cognitive load theory

Cognitive load theory (CLT), which was proposed in 1988
by Sweller [14], is the underlying scientific idea behind the
latter kind of system. The general idea of CLT is building
on the substantial difference between long-term memory and
working memory. Long-term memory describes the kind of
knowledge that has been consolidated, either by means of
emotional impact [15] or over time through repetition [16].
Working memory describes the cognitive system that can hold
information for a limited amount of time and/ or at a limited
capacity. For instance, most people can recall 7 digits, when
presented with a long sequence of digits [17]. This capacity
can be increased through practice or by using mnemonic
techniques, like chunking [18]. Chunking describes the process
of summarizing a few smaller items into one larger item. The
sequence 1-9-8-1-7-4-7 might be chunked into two items (the
year 1981 and Boeing 747) instead of the individual seven
items. Planning, problem-solving, and creativity are examples
of tasks that are associated with working memory. Transferred
to work instructions, novice workers might initially need step-
by-step instructions, while over time they learn to chunk
common sequences and a single instruction may thus cover
more complex operations. CLT itself focuses specifically on
the constraints of working memory and distinguishes in the
context of learning three different types of cognitive load:

• Intrinsic load - inherent to the complexity of the mate-
rial.
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• Extraneous load - related to the way the material is
presented.

• Germane load - inherent to the process of actively
“constructing” knowledge.

Based on this distinction, in a teaching context the goal is to
minimize extraneous load, while managing the intrinsic load
based on the learner’s proficiency and maximize the germane
load, as it is associated with the actual learning process.
For an assistance system the extraneous load is especially
important as the way digital instructions are presented are
the key characteristic that can relieve the perceived cognitive
load. In the context of an assistance system, the intrinsic load
is inherent to the operation that the worker is supposed to
do next. Germane load does not really apply to assistance
systems, as performance assistance is the goal in opposition
to traditional ”learning”. Learning can still occur; however, it
is usually considered to be incidental rather than intentional,
since the worker is not expected to recall any information later
on. Assistance systems do borrow from instructional design as
well as user experience (UX) design. As pointed out before,
assistance is different from learning, therefore it is important to
critically reflect, whether instructional design insights should
actually be applied to the assistance system in question.

C. Relevant UX and instructional design principles

Mayer’s principles for multimedia learning [19] are well-
cited and grounded in cognitive load theory. The principles
are based on three assumptions. People perceive information
through two different channels, one for processing auditory
information and a second one for visual information. Present-
ing auditory information via assistance systems is actually
somewhat tough, as the shop floor environment is quite
noisy to begin with and workers are expected to listen up.
Moreover, Mayer assumes people have limited-capacity to
process information at any one point in time. Finally, he
argues that a learner should be actively engaged with the
content to be learned to achieve better results. Examining
each of the twelve principles is beyond the scope of this
paper, therefore we pick out the more relevant ones for our
argument. The ”multimedia principle” is the very first principle
on the list and states that learners learn best when provided a
combination of words and pictures. This might be somewhat
relevant, as this is supposed to benefit the processing of
information, a goal we also strive for with assistance systems.
The ”segmenting principle” states there are better learning
outcomes when students can control the pace. This is not
feasible on a shop floor, because the tact times are not based on
each new worker. The ”coherence principle”, which states that
unnecessary information should be excluded for better learning
outcomes, and the ”signaling principle”, which states that vital
information should be highlighted in a way to draw attention,
are valuable ideas, in particular for assistance systems.

A valuable framework for the UX design of information
systems was created by Nielsen and Mack [20]. They came up
with 10 usability heuristics, many of which are also relevant
to assistance systems, as they are information systems, too.

The system status should be visible. There should be a match
between the system and the real word, which means that
words and pictures that are based in the real world are much
more effective than internal ones. This is the inherent logic
for a ”pencil” icon, to equip a form of digital pencil. User
control and freedom is a less important principle for assistance
systems. The idea is that users often perform actions by
mistake, hence there should be a sort of emergency exit,
similar to the possibility to ”exit without saving”. The notion
that there is a need for explicit error messages is relevant for
maintenance personnel, but may be less relevant to the worker.
On the other hand, the ”consistency and standards” principle
directly relates to findings from [21] and [22] which we will
discuss further below. The principle ”recognition rather than
recall” is linked to CLT as the memory burden of the user
should be reduced. The principle ”Aesthetic and minimalist”
design states that unnecessary information should be excluded
from interfaces. This principle is very similar to Mayer´s ”co-
herence principle”. These frameworks are cornerstones in their
respective fields and share some foundational assumptions.
However, as pointed out before, assisting is in some important
aspects different from learning or teaching.

D. Designing assistance systems

The distinction between learning and assisting raises the
question of how assistance systems should be designed to
effectively support workers. Bartolomei, Barravecchia, Mas-
trogiacomo, et al. [23] propose a promising framework for
establishing rules for how work instructions in an assistance
system could be created based on the assembly features of
a task and which media formats are suited best for each
assembly feature. Holland and Bronsvoort [24] introduced
the “taxonomy of assembly features” in 2000, which serves as
the foundation of the framework of Bartolomei, Barravecchia,
Mastrogiacomo, et al. [23]. On the level of mapping the ideal
assistance systems to a specific task and a user group, Mark,
Rauch, and Matt [1] introduced a systematic methodology.
They devised nine categories of workers (i.e. elder worker,
unexperienced worker) and mapped a total of 23 issues, which
either need to be addressed or not to each user group. For
instance, an elder worker has the issues of hearing and seeing
adequately, hence an assistance system needs to account for
that. They further looked at all possible forms of assistance
systems and gave each assistance system a score for each
of the 23 issues based on how well the system is suited to
address this issue. This proposed methodology assumes that
one can calculate which of the issues need to be addressed
at the workstation, also considering the group of workers, and
then calculate the best assistance system for the given scenario.

E. Optimizing work instructions

Beyond optimizing assistance systems based on task re-
quirements and worker profiles, it is also essential to consider
the quality of the work instructions provided to ensure ef-
fectiveness and usability. Low quality work instructions may
reduce the efficiency of an operator, despite the growing
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capabilities expected from one. In order to build high quality
work instructions, we first need to focus on avoiding bad work
instructions. Haug [21] identified a total of 15 potential quality
problems that may affect work instructions. Haug defined work
instructions as ”instructions delivered in both verbal form
(words, communicated orally or in writing) and non-verbal
form (pictures, images, models, gestures, etc.)”. Palmqvist,
Vikingsson, Li, et al. [22] drew from Haug’s framework and
other previous work [25], [26] and synthesized six critical
attributes for improving usability in assembly instructions.
These attributes are relevance, timeliness, correctness, ac-
cessibility, completeness and format. They used the gathered
information as the basis for nine statements that guided the
evaluation of work instructions:

• display information clearly
• contain relevant content
• does not contain any difficult terms
• easy to understand
• can be interpreted fast
• support the understanding of work tasks
• support daily work
• support standardized work
• show ergonomic guidelines
While they offer valuable insights into how a work instruc-

tion should look like, both frameworks fail to provide any
specific means to assess and evaluate work instructions on
an objective level. In the following section, we want to add
to these works, by conceptualizing ways to actually measure
these qualities and guidelines objectively.

III. TOWARDS COMPUTATIONAL QUALITY MANAGEMENT
OF INSTRUCTIONS

The TwinMaP project focuses on improving the quality
and adaptability of work instructions in industrial assembly
environments. Instead of viewing the instruction system as an
isolated entity, our approach recognizes that work instructions
exist within a broader operational framework, where multiple
stakeholders interact. To improve instructional quality, we
define a pipeline that incorporates three key entities:

• operation reasoner - The decision-making component
responsible for generating a valid work plan as basis for
instructional content.

• instruction planner - The adaptive optimization unit
that refines instructions based on worker-specific needs.
It ensures that instructions are tailored to the operator’s
skill level, cognitive capacity, and task complexity.

• presentation layer - The interface for delivering instruc-
tions, including both textual guidance and 2D/3D visual-
izations. It determines how information is structured and
presented.

By recognizing these entities, our approach enables a struc-
tured mapping of instruction quality issues to their respective
areas of responsibility. This ensures that optimization efforts
and quality problems target the right aspect of the instruction
pipeline, depending on their origin in the system architecture.

Fig. 1. The figure illustrates the identified instructional challenges (measur-
able either objectively or subjectively) and maps each to one of the three
system components responsible for the instructional challenge

We argue that Haug’s framework is a valuable starting
point for our considerations in regard to quality problems
and respective potential metrics for the assistance system to
calculate. Hence, we will go through the relevant quality
problems one by one (Fig. 1). It should be noted that we
disregard potential technical problems, like 3D models not
loading, slow internet speeds and so on. This is more of an
general requirement. An ambiguous textual instruction arises
when an instruction is phrased in a way that leaves room for
interpretation. For instance, the instructions ”Tighten the screw
appropriately” begs the questions on which particular screw
to use and what ”appropriately” actually means. This kind of
wording can create confusion for the operator, leading to mis-
interpretation, slower task execution, and potential errors. This
issue is closely related to inconsistency, as ambiguity may
also results from a lack of uniform terminology, vocabulary,
and phraseology across different instructions. Nielsens Usabil-
ity Heuristics further emphasize that consistency in language
enhances the UX. To identify and quantify inconsistency in
the presentation layer, various computational metrics can be
employed. Perceptual similarity [27] and Structural Similarity
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Indices (SSIM) [28] can be used to detect discrepancies
in instructional design by analyzing the visual structure of
text-based instructions. On a textual level, cosine similarity
embeddings [29] can assess linguistic consistency, ensuring
that different instructions for the same action maintain uniform
phrasing. To prevent or mitigate ambiguity and inconsistency,
several strategies can be implemented:

• Implementing a controlled vocabulary that ensures con-
sistent terminology across all instruction sets.

• Using standardized sentence structures to maintain clarity
in procedural steps.

• Providing inline clarifications for potentially ambiguous
terms, especially for novice users.

• Restricting free-text input by offering predefined action
choices and structured text elements, minimizing the risk
of inconsistent phrasing.

• Using a trained model to generate uniform text sugges-
tions from free-text inputs, ensuring that all instructions
adhere to a predefined linguistic standard.

The timing of presented information is critical in industrial
worker assistance systems. Even when an instruction is tech-
nically correct, its effectiveness depends on when and how it
is delivered. Untimely presentation occurs when instructions
are shown either too early, too late or in a way that disrupts
the natural workflow of the worker. This issue affects both the
textual and the visual components in the presentation layer.
Untimely presentation can occur when the 3D model revealing
future steps prematurely, irritating the operator with irrelevant
information at the time and making it difficult for the worker
to focus on the immediate task. This can result in misplaced
attention and slower task execution. Therefore, instructions
should be synchronized with task progression, ensuring that
both textual and 3D visual instructions appear only when
relevant. Progressive disclosure should be used in 3D models
preventing distractions from future steps. Beyond cognitive
overload, other accessibility barriers must be addressed to
ensure that instructions are usable for all workers. Factors such
as visual impairments (e.g., color blindness, contrast sensitiv-
ity issues), reading difficulties (readability), or dyslexia can
impact a worker’s ability to efficiently process instructions.
Implementing contrast-aware design, alternative text formats,
and customize font sizes can enhance accessibility for diverse
user needs. The system should allow workers to set individual
preferences, like visual accessibility options, while persistently
storing these settings to automate future adaptation.

Ensuring the correctness of instructions is a fundamental
responsibility of the operation reasoner and instruction planner.
Errors in instructions — whether caused by manual planning,
outdated data, or incorrect interpretation of system-generated
plans - can lead to inefficiencies, mistakes, or safety risks.
Incorrect instructions directly impact trust in the assistance
system, affecting both believability (worker confidence in the
instruction) and reputation (long-term reliability perception).
To assess trust in the system, usage tracking can provide
valuable insights. Monitoring whether and how frequently

operators rely on the assistance tool can indicate confidence in
its reliability. A decrease in engagement or frequent overrides
of suggested instructions may signal trust issues. To enhance
trust and reliability, planning systems must:

• Verify data accuracy by cross-referencing existing
databases, machine data, and expert knowledge before
instructions are issued.

• Introduce validation mechanisms that allow for expert
review, historical instruction comparisons, and automatic
plausibility checks.

• Provide traceability for instructions, showing sources of
information and allowing workers to report discrepancies
in real time.

Worker-related instruction issues require an iterative, user-
centered approach, as their resolution depends on adapting
instructions to the worker’s expertise, cognitive capacity, and
interaction behavior. Unlike general instruction quality prob-
lems, which can be optimized based on established UX and
instructional design principles, these issues demand dynamic
personalization, ensuring efficiency with low cognitive load.

A key challenge is balancing instruction payload, as too
large amount of information can overload both experts and
novices, while too little information may lead to a deficient
instruction. The instruction planner, responsible for adaptive
individual optimization, e.g. by chunking, should ensure that
optimized instructions are not that repetitive and inconcise
like their original versions, focusing on delivering only the
necessary information for the task at hand.

Issues such as content that is difficult to understand
can be objectively assessed using readability metrics like the
Kincaid Grade Level [30], though adapted for the industrial
context. Similarly, whether an instruction is unneeded is often
a subjective perception, as what is redundant for an expert
may be essential for a novice. These subjective issues are
classified accordingly in our system, as depicted in Fig. 1,
where instruction-related quality problems are distinguished
between objective and subjective aspects.

While subjective issues require worker-specific adaptation,
activity monitoring helps identify patterns that indicate poten-
tial problems. For instance, tracking ”continue” or ”skipping
time” during instruction execution can reveal whether certain
steps are consistently skipped, suggesting that they may be
perceived as unnecessary. Likewise, extended interaction time
on specific steps may indicate excessive complexity (too
complex content). Such data-driven insights, combined with
direct user feedback, allow the system to iteratively refine and
personalize instructions.

IV. CONCLUSION

In this paper we explained the vision for Industry 5.0 and
how assistance systems are vital for integrating the future
worker into the factory of the future. More specifically, we
looked at existing frameworks on work instruction quality and
built on these previous works to map potential quality prob-
lems of work instructions to the components of an assistance
system that affect these issues. Additionally, in our effort to
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propose metrics that can actually be used to objectively and
automatically assess instructional problems, we categorized
the issues into the categories ”objective” and ”subjective”.
This categorization helped us identify the specific problems
that are a problem of adaptation or a general problem. Finally,
we actually proposed ways to prevent and mitigate different
instructional problems. It is difficult to come up with ways to
assess the subjective measures. These kinds of metrics need yet
to be developed. Possible research could look into the validity
of expert reviews for assessing these subjective qualities or
real-time worker feedback. One may also include an additional
performance monitoring layer within the assistance system.
The proposed approach to systematically manage the quality
of automatically generated work instructions, while built on
previous works from different fields (i.e. UX design, linguis-
tics), remains purely theoretical as of now. In a next step, we
plan to actually integrate the proposed metrics and insights
into an assistance system and study the potential merits of the
approach outlined in this paper.
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