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Abstract: Mobile Augmented Reality (AR) is a promising technology for educational purposes. It
allows for interactive, engaging, and spatially independent learning. While the didactic benefits
of AR have been well studied in recent years and commodity smartphones already come with AR
capabilities, concepts and tools for a scalable deployment of AR are still missing. The proposed
solution TrainAR combines an interaction concept, a didactic framework and an authoring tool for
procedural AR training applications for smartphones. The contribution of this paper is the open-
source visual scripting-based authoring tool of TrainAR in the form of a Unity Editor extension.
With this approach, TrainAR allows non-programmer domain experts to create (“author”) their own
procedural AR trainings by offering a customized editor, while at any time programmers may decide
to utilize Unity’s full capabilities. Furthermore, utility and usability evaluations of several already
developed TrainAR trainings (combined n = 317) show that TrainAR trainings provide utility in
several contexts and are usable by the target groups. A systematic usability evaluation of the TrainAR
Authoring Tool (n = 30) shows that it would be usable by non-programmer domain experts, though
the learning curve depends on the media competency of the authors.

Keywords: augmented reality; handheld; authoring; content creation; 3D scanning; procedural
training; scalable; education; learning; training

1. Introduction

Through the contextualization of digital content and information directly into physical
reality, Augmented Reality (AR) provides a powerful set of possibilities for training and
learning purposes. The added benefits of using AR in education are generally well known,
and studies indicate that the application of AR as an additional “multimedia source” in
existing curricula can already lead to improved retention, attention, and satisfaction [1]. A
meta-analysis shows increased academic achievement with AR compared to traditional
learning methods, along with increased concentration, and it also indicates that it enables
teachers to convey concepts faster and with greater clarity through the demonstration
of connections between concepts and principles [2]. Additionally, secondary literature
furthermore points towards a consistently positive impact of AR tools used in educational
settings [3], especially through interaction, catching the learner’s attention, and increasing
motivation [4]. In particular, although significant differences can be observed for all levels
of education, the largest effect size of learning benefits can generally be observed for
students at the undergraduate level [2]. Therefore, while user attitudes towards AR are
influenced by the perceived usefulness and perceived enjoyment of the user, the findings
indicate that perceived enjoyment is a more significant factor than perceived usefulness
regarding the intention of using AR as a learning source [5].

1.1. Current Challenges in Educational AR

If those benefits are already well known, why is there no widespread adoption of AR
in educational settings? While the answer may at least partially be found in the generally
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hesitant adoption of information and communication technology in educational contexts
because of rigid structures, restrictive curricula, and teachers lacking relevant pedagogical
training [6,7], there is also the problem of the availability of a suitable, scalable AR that
can be directly applied to aid the teachers’ educational goals. While AR hardware in the
form of head-mounted devices (HMD), which is increasingly available at lower costs, and
commodity handheld/mobile AR hardware, which already comes with solid marker-less
tracking techniques, would, in theory, allow for a realistic deployment of AR into teaching
curricula today, this currently is not true for the AR software complements. Currently, most
AR applications are rather narrow in their scope, often focusing on specific subjects and
showing learning benefits with pre-defined prototypes [7], while teachers would primarily
need approaches with common concepts, where they would like to be involved in the
development process [8]. Therefore, as teachers rarely have relevant AR programming
expertise [9], the development of new AR content should be made as easy as possible for
them and ideally not involve any scripting or programming [9,10].

1.2. Creating AR Content

This process of AR content creation is generally referred to as “authoring,” and it is
one of the biggest general challenges in AR today. Even outside of education 10 years
ago, Schmalstieg, Langlotz, and Billinghurst [11] already recognized authoring to be one
of the five big challenges holding back the widespread adoption of AR. While most of
their proposed challenges, such as low-cost platforms, mobility, and suitable back-end
infrastructure, are already solved on mobile AR devices utilizing Android and iOS, even
today, AR content authoring remains a challenge. There are multiple reasons why this is
the case. Firstly, there is an inherently complex need for a tradeoff between the fidelity
of possibly created AR applications and the required technical expertise [12]; in other
words, either you can create powerful AR scenarios with complex interactions or it can
be used with very little technical expertise. Finding the “sweet spot” where non-experts
in the technical domain can create complex AR scenarios on their own is still a research
question to be answered, so today’s AR applications are either built by programmers with
significant expertise or authored AR content by non-technical domain experts offering
little-to-no interactions [13]. Secondly, AR App development is difficult. A study conducted
by Ashtari et al. [14] found that even programmers, ranging from hobbyists to professionals,
face consistent challenges with AR development. They report a current lack of concrete
design guidelines and examples and incorporation of novel interaction metaphors such
as physical aspects to be challenging, and they complain about many unknowns in terms
of development, testing, debugging, and user evaluations. Lastly, developing authoring
tools as a research topic is a thankless endeavor, or as Nebeling [15] described it for
toolkit research in general, a “tricky game”. Toolkits are hard to develop, tackle multiple
challenges from different disciplines at once, and, in the end, are often hard to publish
based on their perceived lack of novelty compared to the time investment necessary to
make them realistically applicable for further use in research applications or even curricular
usage. This lack of recognition of software artifacts is also a topic of ongoing debate in the
educational technology research area [16].

As we therefore believe that only usable, scalable, and self-sufficient comprehensive
concepts for AR content can realistically enable AR usage in education, we propose TrainAR,
a threefold combination of an interaction concept for procedural task training on handheld
AR devices, a didactic framework discussing its implementation as a multimedia source
in existing curricula, and an AR authoring tool (See Figure 1) enabling both technical
but also nontechnical domain experts to create AR trainings. Therefore, the concept of
interaction and the didactic framework of TrainAR have already been published in a
separate publication [17], and the contribution of this paper is the TrainAR authoring tool
for AR trainings. The TrainAR authoring tool is an open-source extension for Unity that
uses visual scripting as its main authoring interaction, while still allowing the usage of the
full C# functionality on demand. Therefore, TrainAR would be classified as a high-level
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programming tool but also a low-level content design tool based on the digital media
authoring taxonomy proposed by Hampshire et al. [12] and allows non-programmers with
significant media competency and programmers to utilize it.

Figure 1. TrainAR: Didactic framework, interaction concept, and authoring tool. This paper discusses
the Unity-based authoring tool that is built based on ARFoundation, allowing the deployment to
both Android and iOS devices through the ARCore and ARKit SDKs, respectively.

This paper is structured as follows: Section 2 describes related work on AR authoring
tools in education and with visual scripting functionality; Section 3 shows the TrainAR
components from a technical perspective; Section 4 introduces the TrainAR Authoring
Tool; Section 5 introduces current utilization and evaluation efforts; Section 6 describes
the utilization and evaluation of currently developed TrainAR Trainings; and Section 7
reports a usability evaluation of the TrainAR authoring tool. Finally, Section 8 discusses the
authoring tool and its evaluations, and Section 9 concludes the paper.

2. Related Work

A forthcoming systematic literature review we conducted revealed that comprehensive
authoring frameworks comparable to TrainAR, combining interaction concepts, didactic
frameworks, and content design tools that could realistically be used to create procedural
scenarios by educators, are missing from the literature. Nonetheless, there is some relevant
literature on both AR authoring tools in education but also AR authoring tools utilizing
visual scripting approaches for the development of more complex AR scenarios beyond 3D
objects on AR markers and very basic user actions.

2.1. AR Authoring Tools in Education

An example of a very rudimentary type of educational AR authoring was proposed
by Dünser et al. [18] for interactive educational books on physics for HMDs. It utilizes
configuration files that could be edited by educators using a standard text editor to connect
virtual 3D content with a preset of pictures present in the book. Liarokapis et al. [19]
proposed a web-based AR authoring tool with an accompanying client–server architecture
that, through the serialization of content into XML, allowed for web-based authoring
and viewing of educational engineering content using webcam-based desktop AR and
marker-tracking technology to contextualize the content. Laine et al. [20] proposed an
AR-based learning games platform, incorporating an AR authoring tool on a desktop PC
(personal computer) and an AR viewer on an Android device, that allowed teachers to create
interactive, story-driven learning games to increase student engagement in science-related
subjects. Blattgerste et al. [21] proposed an authoring tool combining a Microsoft HoloLens
and a smartphone as an external controller for the in situ authoring of procedural training
tasks, which could be used on HMDs to instruct trainees to perform action sequences.
They showed that promptly authored instructions created with this authoring tool could
successfully be utilized to help people with cognitive impairments to perform an action
sequence they were not previously able to complete [22]. In line with these endeavors,
Escobedo et al. [23] utilized a client-server-based AR authoring tool, allowing teachers
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to superimpose digital content onto objects to help students with autism to stay focused
during learning tasks. Finally, Lytridis et al. [24] proposed a desktop-based authoring
tool that allows teachers to contextualize interactive 3D content with images in textbooks
similarly to the approach proposed by Dünser et al. [18] but as a web-based approach.
Their tool also allows for interactivity by allowing the student to ask questions and receive
context-specific learning hints based on the visualized AR content.

2.2. Visual Scripting for AR Authoring Tools

Previous works on visual scripting for AR authoring mostly used either the visual
scripting language Scratch, developed in the Massachusetts Institute of Technology (MIT)
Media Lab [25], or the JavaScript-based visual scripting abstraction layer Blockly developed
by Google. Most of them were used within web-based desktop applications.

Kelly et al. [26] developed a web-based AR authoring tool that utilizes Scratch for the
rapid prototyping of real-time tangible user interfaces with AR components. Furthermore,
Not et al. [27] utilized Scratch for their cultural heritage museum authoring tool, which
also incorporated the possibility to display AR content to visitors. Notably, Mota et al. [28]
not only developed a web-based AR authoring tool for the development of educational AR
content by teachers through Scratch-based visual scripting, but, through their evaluation,
could also successfully show that the block-based visual scripting approach helped teachers
to overcome their lack of programming skills and enabled them to develop their own AR
learning material combining interactive 3D content with Markers.

Using the JavaScript-based visual scripting abstraction layer Blockly, Apaza et al. [29]
developed SimpleAR, a web-based AR authoring tool allowing users to create interactive
AR content by selecting objects from the then-available Google Poly 3D database and
combining them with AR markers and Blockly-based interactions that could then be used
on a dedicated Android viewer application. In line with this, Nguyen et al. [30] proposed
BlocklyAR, a Blockly extension allowing AR learners and enthusiasts to author and share
marker-based AR scenarios without the need to program.

Most similar to the approach proposed in this paper, Castillo et al. [31] proposed a node-
based visual scripting authoring tool that extends the Unity game engine by introducing
visual scripting functionality into the normal Unity Editor Layout for the development of
educational, marker-based interactive 3D AR content.

3. The TrainAR Framework Components

Forms of interaction with virtual objects and especially procedural interactions in the
form of chains of actions are well studied in Virtual Reality (VR) settings and comprehen-
sive toolkits, and frameworks exist to implement them. For example, pre-implemented
interaction metaphors and presets delivered with frameworks such as the SteamVR Toolkit,
XR Interaction Toolkit SDK, VRTK, OpenVR, or Microsoft MRTK allow developers to focus
on the content of their training application rather than worrying about the basic interaction
principles with their usability and learnability considerations. For AR, this becomes more
challenging, but for HMDs, there are at least gestural interactions, external controllers,
and frameworks such as the Microsoft MRTK to provide interaction concepts and basic
principles to expand on.

For handheld/mobile AR, the case is even more complicated. While interaction
concepts are sparsely explored in the literature and some interaction toolkits do exist, they
are currently neither evaluated, nor do they provide the same “out-of-the-box” application
utility for developers to directly apply them the same way, compared to VR development.
As mobile AR interaction concepts are mostly visual/viewing experiences or ray-casting-
based approaches utilizing direct screen touch or UI button approaches, this challenge is
only exaggerated in the context of procedural chains of actions necessary for task training.
Combining this research gap with the current general challenges faced in Mixed Reality
research of finding out how to onboard users to this novel type of application and type of
interaction with the uncertainty of how, when, and how much feedback to provide to the
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user during trainings, this leads to a substantial amount of time spent by developers on
designing interaction concepts from scratch and technical aspects of AR trainings instead
of focusing on the content of the training itself. Furthermore, this always requires iterative
feedback loops with didactic experts on the interaction and feedback mechanisms. It
creates a causality dilemma of not being able to develop a fitting interaction concept and
feedback mechanisms without knowing the training task in detail, but also not being able to
transfer practical training towards a technically implementable flow of states before having
a reference for what such a handheld AR training could look like. This dilemma not only
makes AR training development particularly time-consuming for interdisciplinary teams
of experts, but makes development of AR scenarios by non-programmers or programmers
without AR-specific expertise (e.g., technical-domain experts or designers) impossible.

3.1. TrainAR: From the Interaction Concept and the Didactic Concept towards an AR
Authoring Tool

To address these challenges holistically, TrainAR is a threefold combination of (1) an
interaction and feedback concept for procedural trainings on mobile AR devices (Android
and iOS) that is realistically scalable today, (2) a didactic framework explaining the instruc-
tional design theory behind the concepts and how an author should conceptually transfer
procedural training tasks into TrainAR trainings, and (3) an authoring tool allowing authors
without programming expertise to create TrainAR trainings through visual scripting, based
on the interaction concept and didactic considerations (see Figure 1). While the interac-
tion concept and didactic framework were already elaborated, discussed, and evaluated
through exemplary implementations in a previous paper [17], this paper focuses on the
unity-based visual scripting authoring tool of TrainAR that allows for the creation of train-
ings in accordance with didactic considerations, utilizing the proposed interaction concept
and feedback modalities. Therefore, the following subsection describes the components
from the technical perspective as they appear in authored trainings.

3.2. Components of TrainAR from a Technical Perspective

Combining the interaction concept and didactic framework, TrainAR includes concepts
and technical solutions for onboarding the user on how to use TrainAR (Section 3.2.1,
automatic technical tracking and assembly placement utility, instructing the user on what
action to perform next (Section 3.2.3), letting the user perform a procedural non-linear chain
of actions (Section 3.2.2), and providing contextualized feedback, insights, and final training
assessments aligned with the didactic considerations described in Blattgerste et al. [17]
(Section 3.2.3). Those components are included in the authoring tool and automatically
included in every training.

3.2.1. Onboarding & Assembly Placement

When an authored TrainAR training is started, trainees are first shown onboarding
animations with textual explanations describing how to interact with objects in AR and
how to trigger actions on them (see Figure 2a–c). This onboarding utility is included
with the framework and automatically deployed by the authoring tool when building the
training for a target device. Therefore, no considerations regarding onboarding and concept
explanation have to be made by the authors of trainings. When using a training, TrainAR
automatically lets the trainee scan (see Figure 2d) a surface area until a sufficiently large
free area is recognized by the underlying tracking library and places the TrainAR training
assembly onto the surface to start the training (see Figure 2e). This technical tracking and
placement utility with its associated onboarding animations is also automatically included
in each authored TrainAR training.
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Figure 2. First row: TrainAR automatically includes onboarding screens and technical utility for
(a) grabbing objects, (b) interacting with objects, (c) combining objects, (d) scanning the training area,
and (e) placing the training assembly. Second row: The basic AR actions of the TrainAR Interaction
Concept that allow trainees to (f) select and (g) grab TrainAR objects. Selected or grabbed objects
can be (h) interacted with. Grabbed objects can be (i) combined with another TrainAR object by
overlapping them. Third row: Custom Actions include UI-based “quiz” actions such as (j) text input
fields, (k) questionnaire elements, and (l) list selection elements. Authors can also create their own UI
overlays that trigger custom actions, for example, (m) a slider to pull up a syringe (see Section 6.1).
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3.2.2. TrainAR Objects and Procedural Chains of Actions

After the placement of the training assembly, the trainee can complete a procedural
chain of actions defined by the author of the training. Those trainings consist of the basic
actions of selecting (see Figure 2f), grabbing (see Figure 2g), interacting with (see Figure 2h),
and combining (see Figure 2i) virtual AR objects called “TrainAR Objects”.

These TrainAR Objects are virtual AR 3D models that were converted by the TrainAR
authoring tool and enriched by scripts, providing them with consistent basic interactive
functionality. These automatically inherited responses are as follows. When selecting a
TrainAR Object, subtle shading and outlining of the selected object is applied (see Figure 2f).
When grabbing a TrainAR Object, it leaps and attaches itself into a static position in front of
the handheld device, where it is always rotated into an upward position from the assembly
ground and keeps a defined distance from the device to make the object stay visible on the
screen throughout the interaction. Users can then displace it, interact with it, or combine
it with another stationary object. When interacting with and combining objects, outlines
visualize the current state-change of the object and whether the action was accepted (valid)
or not, while object-specific interactions that are triggered are defined by the author of
the training.

Alongside those basic actions, trainings can have Custom Actions (see Figure 2m)
that serve as customizable action triggers defined by the author. This allows authors
to implement independent concepts outside the interaction scope provided by TrainAR.
Furthermore, trainings can utilize predefined UI components such as input fields (see
Figure 2j), questionnaires (see Figure 2k), or list selections (see Figure 2l) to realize in-
procedure quizzes or material selection, or to check for decision procedures that could not
otherwise be sufficiently covered by just the basic actions of TrainAR.

3.2.3. Instructions, Insights, and Feedback

Besides the actions, which serve as input from the trainee, several types of output
modalities are delivered with TrainAR. They are used to elicit instructions, feedback, and
insights or to indicate technical problems. Firstly, the technical feedback screens are always
included when deploying a training. They automatically trigger when technical problems
are detected to provide feedback to trainees, e.g., if there is insufficient light, not enough
feature points for tracking, or the smartphone moves too fast (see Figure 3a). Authors do
not have to develop any technical instructions or problem feedback themselves.

Figure 3. The output modalities of the TrainAR Interaction Concept consist of (a) feedback to aid
technical problems, (b) instructions and progress indicators, (c) expert tips and insights, (d) error
feedback overlays, and (e) a training summary at the end of each training.
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To instruct the trainee on what action or bundle of actions should be performed next,
textual instructions are displayed on a UI panel on top of the device screen, including
a progress bar showing the current completion percentage of the training to the trainee
(see Figure 3b). After triggering one of the actions, the trainee is always provided with
feedback in the form of a blinking outline and a sound effect. For some errors, it might be
necessary to communicate a message. In this case, error overlays take the trainee out of
the training context into the UI and can show textual feedback to the trainee who has to
be dismissed manually (see Figure 3d). Occasionally, there might be information that is
neither instruction nor feedback on an action of the user but still important as part of the
training, e.g., expert insights that provide additional tips from practice. In this case, insights
can be used that display textual tips as a speech bubble UI element at the top of the screen,
optionally also including auditory tips (see Figure 3c). After the training is concluded, a
training summary is displayed to the trainee showing the training time, number of errors,
and the errors contextualized on a performance scale (see Figure 3e).

4. The TrainAR Authoring Tool

The TrainAR Authoring Tool is a Unity-based authoring environment that is built
upon the Unity Editor interface and utilizes the ARFoundation, ARKit, ARCore, and Visual
Scripting packages. Its layout inside Unity is displayed in Figure 4. It allows authors to
create TrainAR procedural trainings out of the components described from the technical
perspective in Section 3.2, utilizing the interaction concepts and didactic perspective pro-
posed in [17]. The authoring tool thereby delivers the interaction concept and all action
implementations, feedback mechanisms, and technical solutions for onboarding, tracking
aid, and training assembly placement. Furthermore, it provides tools to convert 3D objects
into TrainAR Objects that automatically inherit all TrainAR behaviors necessary to work
within the flow of states of the training. The author of a TrainAR training only has to
import 3D models, convert them, and then reference them in a procedural visual scripting
flow to specify their state changes during the training based on user actions. Authors
can then optionally implement additional guiding instructions, feedback modalities, or
quizzes. These two central concepts and the remaining tasks for the authors are referred
to as the “TrainAR Objects” in the “Training Assembly” and the “TrainAR Stateflow” in
the “TrainAR Statemachine” (see Figure 4). To enable authors to accomplish those tasks,
the layout of the authoring tool is split into several regions: the “Unity Project folder”
that shows all imported Assets in the project, a simplified “Unity Inspector” with a list of
Objects currently displayed in the scene, the “TrainAR Assembly Scene”, allowing authors
to view the TrainAR Objects of their training contextualized on a reference setup, and the
“TrainAR Visual Statemachine”, which allows authors to determine the state flow during
the training, based on the users’ actions. The “Device Preview” allows authors to preview
the training assembly from the perspective of the users’ smartphone.

At the time of publication, the TrainAR Stateflow encompasses 10 types of visual-
scripting nodes that can be used by referencing the corresponding TrainAR Object by name.
All included nodes are visualized in Figure 5 in relation to the interaction concept [17]. They
are described in more detail in the TrainAR online documentation. The TrainAR: Onboarding
completed, and training assembly placed node indicates the start of the TrainAR training and
automatically starts the flow of states after the Training Assembly was placed in AR by the
trainee. The TrainAR: Object Helper node is a collection of tools that help to change the state
of TrainAR Objects when reached during the flow of states, e.g., changing their visibility,
possible actions this object responds to, or replacing them with other objects during the
flow. Additionally, four of the nodes are action nodes. If the TrainAR Statemachine reaches
one of these nodes during a TrainAR training, it waits for an action by the trainee. These
actions can be grabbing, interaction with or combining TrainAR Objects. This can either be
exactly one specific action to continue (TrainAR: Action), n multiple actions in no particular
order (TrainAR: Action (Multi)), n actions that lead to m <= n different flows of actions as
a consequence(TrainAR: Action (Fork)), or the requirement for the user to complete a quiz
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such as a questionnaire, list-selection task, or text input (TrainAR: Action (UI)). The four
remaining nodes are output and feedback nodes. The TrainAR: Instructions node allows the
author to provide adaptive textual instruction to the user of the training. If the user should
be provided with specific feedback during the training when performing an incorrect
action, the TrainAR: Feedback node can be used. Sometimes, information has to be conveyed
that is neither direct instruction on what action to perform next, nor feedback based on a
performed action. In this case, TrainAR: Insights can be used to, e.g., provide additional tips
or insights from practice to the trainee.

Figure 4. The TrainAR Authoring Tool layout combines the Unity Inspector and projects folder with
the TrainAR Training Assembly, TrainAR Visual Statemachine, and a Scene preview, allowing authors
to create procedural TrainAR trainings.

4.1. Design Considerations for the TrainAR Authoring Tool

According to Hampshire et al. [12], AR authoring tools can generally be classified into
low-level programming tools, high-level programming tools, low-level content design tools,
and high-level design tools. With the increasing abstraction of concepts, authoring tools
can also use higher-level interface abstractions, which makes them easier to use. However,
as a consequence, this also increasingly limits the AR scenarios that can be created with the
tool. Although it would seem plausible to try to target teachers themselves and, therefore,
design a high-level content design tool, we deliberately designed and developed a low-
level content design tool with TrainAR. While higher-level standalone approaches were
considered during the conceptualization, this decision was made for two reasons.
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Figure 5. The concepts introduced in the TrainAR interaction concept and didactic framework (left)
and their corresponding Statemachine nodes in the TrainAR Authoring Tool, which can be used to
author the TrainAR training.
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Firstly, even if the authoring tool itself was designed as a high-level content design
tool, the generation, or acquisition of 3D assets to use in the authoring tool would still likely
require significant media competency (described in more detail in Section 4.4), possibly
nullifying the gained advantages from the higher interface abstractions, and could even be
too time-consuming to be realistically performed by educators/teachers themselves.

Secondly, this approach allows us to implement the TrainAR authoring tool as a
Unity extension, which provides several advantages but inherently comes with increased
complexity of the user interface of the tool. As such, TrainAR is an abstraction layer,
which allows creating and deploying AR Trainings without any programming expertise (a
low-level content design tool), but as an extension, it is also fully integrated into the C#
environment and Unity’s own Visual Scripting approach. With this approach, programmers
can also use TrainAR as a starting point or high-level programming tool and expand it
where necessary (described in more detail in Section 4.5).

4.2. Open-Source Availability and Documentation

The complete source code of the TrainAR authoring tool is available as a Git Reposi-
tory under https://github.com/jblattgerste/TrainAR/ (Accessed: 31 March 2023) under
the MIT License. Besides the full source code for the authoring tool as a Unity Editor
extension, this includes the complete source code for the TrainAR interaction concept, a
full documentation of the code, API references (see https://jblattgerste.github.io/TrainAR,
accessed: 31 March 2023), and a “Getting Started Guide” (see https://jblattgerste.github.
io/TrainAR/manual/GettingStarted.html, accessed: 31 March 2023) that helps authors
of TrainAR trainings to quick-start their AR training development. Additionally, it helps
programmers to expand TrainAR towards context-specific needs in a dedicated section to
expanding TrainAR.

4.3. Envisioned Workflow for Authoring TrainAR Trainings

The designed workflow of using the TrainAR authoring tool is described in detail
in the “Getting Started Guide” for one example scenario. Abstractly, it is envisioned as
follows.

First, the user downloads the Unity Editor and installs it on a Windows, Linux, or
macOS computer. Afterward, the user can download the TrainAR project from GitHub
either as a .zip folder or by cloning it via git. Opening the project in the specified Unity
version allows the author to then switch Unity to the TrainAR authoring tool mode through
a context menu, providing the author with the authoring tool setup shown in Figure 4.

The user can then start with the authoring of a TrainAR scenario by importing 3D
models into the Unity Project Folder, placing them into the TrainAR Assembly Scene,
and converting them into TrainAR Objects through a simple click on a button that starts
TrainAR’s model conversion process visualized in Figure 6. Afterward, through overlays
in the TrainAR Assembly scene, the author can then translate, rotate, and scale models and
define the TrainAR objects’ initial set of interaction abilities (Visible, Grabbable, Interactable,
Combinable). The author can thereby compare sizes and distances based on the reference
preview scene provided with the authoring tool. After the conversion of all models and the
arrangement of the training assembly scene, the author can create the flow of states in the
TrainAR Visual Statemachine through visual scripting. This is carried out by adding the
TrainAR logic nodes specified in Figure 5 and referencing TrainAR Objects in those nodes
by name.

After completing the authoring process of both the TrainAR Stateflow and assembly,
the author can connect an Android or iOS device to the computer and press the Play button
at the top of the editor to install the TrainAR training app to a smartphone. This deploys
the training to the device and, besides the authors’ objects and stateflow, automatically
includes the TrainAR interaction concept, onboarding animations, technical tracking, and
assembly placement utility.

https://github.com/jblattgerste/TrainAR/
https://jblattgerste.github.io/TrainAR
https://jblattgerste.github.io/TrainAR/manual/GettingStarted.html
https://jblattgerste.github.io/TrainAR/manual/GettingStarted.html
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Figure 6. The modal window for the conversion of 3D objects from a variety of sources and in different
formats into a consistent TrainAR Object, which is simplified, compatible with TrainAR, automatically
inherits all intended behaviors, and can be referenced in the TrainAR Visual Statemachine.

4.4. Content Generation through 3D Scanning and Natural Language Prompts

With this authoring workflow, the most challenging technical aspect remaining for
authors is likely the generation of the 3D content for the AR trainings. While there is an
increasing availability of educational 3D content on the web [32], available models might
not always be fitting or there might be no models available for specific training contexts.
Therefore, besides the creation of models through 3D modeling software such as Blender,
or the processing of CAD models, a central consideration for TrainAR is the generation of
3D content through 3D scanning. Through pre-checks and mesh conversions during the
conversion from normal Unity GameObjects with attached 3D meshes in various formats
to TrainAR Objects, models are created automatically that are compliant with the TrainAR
framework, independent of their source and initial structure (see Figure 6). As this includes
mesh reparation, simplification, and merging, this is not only helpful for 3D scanned objects
but also paves the way for the inclusion of meshes from other sources that will emerge
in the near future, e.g., 3D models generated through natural language prompt-based
approaches, as is currently being researched by Google Research [33].

4.5. Beyond TrainARs Statemachine: Expanding on the TrainAR Framework

In anticipation that the TrainAR Statemachine, while being the factor that enables
non-programmer domain experts to utilize it, would also be the most limiting factor
for more experienced users and programmers trying to implement more context-specific
requirements, we deliberately chose to develop TrainAR’s authoring tool in the form of a
Unity extension and expanded upon the Unity Visual Scripting Package [34] for the visual
TrainAR Statemachine.

This approach allows for an expansion of the TrainAR authoring tool in several
directions. Foremost, the custom Action node allows for triggering state changes with a
parameter from a MonoBehaviour manually, allowing for user actions besides grabbing,
interacting, and combining out of the box. Additionally, nodes provided by Unity’s Visual
Scripting package are completely compatible with all TrainAR nodes, making it possible
to integrate them into stateflows for more complex behaviors in terms of the flow of
actions, therefore providing stateflow-level expansion possibilities for TrainAR. For the
expansion of TrainAR on the object level, when switching into the Unity Editor layout, all
MonoBehaviours of converted TrainAR objects are exposed, and object-level Events, e.g.,
for this specific object being selected, interacted with, grabbed, or combined, are exposed
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as UnityEvents and can be used to implement more complex object-level behaviors such as
animation triggers or object-specific MonoBehaviour C# scripts that trigger event-specific
custom behaviors. Finally, if authors want to use the interaction concept and technical
onboarding utility of the framework in non-procedural training contexts, e.g., for conceptual
training games, rule-based stateflows, or simply want to program stateflows themselves,
the visual statemachine can be switched off entirely by simply commenting out a single
line of code in the Statemachine connector (see https://github.com/jblattgerste/TrainAR/
blob/main/Assets/Scripts/Static/StatemachineConnector.cs, accessed: 31 March 2023)
and handling the requests of the state change function manually through C# scripting.

5. Utilization and Evaluation

Evaluating TrainAR’s authoring tool inherently means evaluating TrainAR holistically
as a framework for the creation and utilization of digital, procedural AR trainings. Conse-
quently, this requires the evaluation of several of its components individually, making the
evaluation challenging and extensive. Additionally, simple lab studies with preliminary
prototypes would likely not suffice to evaluate TrainAR’s most important aspects, or might
even be misleading based on our perspective and usage vision. While extensive evalua-
tions are ongoing, the following Sections 6 and 7, provide preliminary insights into our
current results. We believe that four questions have to be answered from the perspective of
somebody trying to utilize TrainAR to entice them to apply it to their context:

1. Do TrainAR trainings elicit learning benefits (e.g., increased retention, conceptual
understanding, or motivation, or providing self-paced learning opportunities)?

2. Are TrainAR trainings usable by and enjoyable for the trainee?
3. Is the TrainAR Authoring Tool usable by non-programmers to create such TrainAR

trainings? More specifically,

(a) What is the required level of media competency, and who can realistically
utilize the TrainAR authoring tool?

(b) How fast can the usage of the tool be learned, and what training or tutorial
material is necessary?

These questions are in line with the accepted User Experience design principle Utility +
Usability = Usefulness, which conveys that a product has to provide utility and be usable by
the target group to be a useful product. We believe, in this specific case of the AR authoring
tool, that this principle has two levels (see Figure 7). First, the Utility and Usability of the
TrainAR training has to be shown to prove them to provide a useful training. If this is true,
the utility of the AR authoring tool would consequently be a possibility for creating a useful
AR training. Then, it has to be shown who can use the AR authoring tool to create these
trainings, as usability is as dependent on the target user as it is on the implementation.

Figure 7. To show the usefulness of the TrainAR authoring tool, its utility and usability have to be
evaluated. The utility of the authoring tool itself is the creation of trainings that themselves have to
be useful, meaning they also have to prove their utility and usability.

https://github.com/jblattgerste/TrainAR/blob/main/Assets/Scripts/Static/StatemachineConnector.cs
https://github.com/jblattgerste/TrainAR/blob/main/Assets/Scripts/Static/StatemachineConnector.cs
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6. Utility and Usability of TrainAR Trainings

To answer research questions 1 and 2, several TrainAR trainings are currently in
development or were developed and evaluated using the TrainAR framework in different
contexts. While evaluations have not concluded for all the trainings, five exemplary
TrainAR Trainings are shown in Figure 8, and their utility and usability evaluations are
described below. For usability assessment, the System Usability Scale (SUS) was used to
make results comparable across the trainings (see Figure 9). As the desired utility of each
TrainAR training and its evaluation is highly dependent on the context, we only discuss the
utility on an abstract level and refer to the authors’ publications for more detailed insights
and discussions.

Additionally, although TrainAR was originally envisioned as a holistic solution com-
bining an interaction concept, didactic framework, and an authoring tool (see Figure 1),
as already discussed in [17], each of the three components can also be used separately. It
has to be noted that the scenarios shown in this section do not necessarily use each of
the components. While all of them use the TrainAR interaction concept, the training of
preparing a tocolytic injection was the starting point for the TrainAR framework abstrac-
tion and therefore was developed from scratch, not utilizing the TrainAR authoring tool.
The denomination of the female pelvis, a game exploring the sourness of fruits, and the
game for exploring ripeness all use the interaction concept and authoring tool but not the
didactic framework, as they are envisioned more as rule-based learning games than strictly
procedural trainings. Only the titration experiment utilizes all three components, though it
also has to be noted that the authoring tool utilized in all trainings was in early preliminary
stages, e.g., not including visual scripting and still requiring programming (see Table 1).
The main focus in this stage was the evaluation of the created trainings, not the authoring
tool, which was evaluated separately (see Section 7).

Figure 8. Five exemplary TrainAR trainings. (1) The preparation of a tocolytic injection in the
context of academic midwifery, (2) the denomination and contextualization of German and Latin
terminology of the female pelvis, (3) a titration experiment in the context of chemical engineering,
(4) the exploration of chemical reactions in early school education, and (5) the exploration of ripeness
as a chemistry learning game for children.
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Table 1. The five exemplary TrainAR trainings shown in Figure 8 and which parts of TrainAR
(Interaction concept, didactic framework, or authoring tool) they utilize for their use case.

TrainAR Scenario Interaction
Concept

Didactic
Framework

Authoring
Tool

(1) Preparation of a Tocolytic Injection X X
(2) Denominating the Female Pelvis X X
(3) Conduction of a Titration Experiment X X X
(4) Exploring Chemical Reactions X X
(5) Understanding Fruit Ripeness X X

6.1. Preparation of a Tocolytic Injection

In the context of the Heb@AR project, a procedural TrainAR training was developed
for the preparation of a tocolytic injection in the context of academic midwifery education
(see Figure 8(1)). Here, the user elicits a sequence of actions to prepare a tocolytic syringe
that is labeled and stored in a fridge, which is a common task in the daily midwifery
routine [35]. For this purpose, the user has to interact with objects and grab, place, and
combine objects while being instructed and tutored by a virtual professional midwife [17].

The desired utility of the training is an opportunity for self-directed, location-
independent learning and an increase in self-efficacy for midwifery students [35]. While
the results for the evaluation of the utility are forthcoming, preliminary analyses and quali-
tative feedback look promising. To measure the perceived usability of the training, the SUS
questionnaire was used. A SUS study score of 83.11 (SD = 12.9) was reported (see Figure 9),
which would indicate “Excellent” usability according to Bangor et al. [36] and surpasses
the non-empirical, but commonly used, industry benchmark of SUS study scores of 80 [37].
With a sample size of n = 33 participants, the results are 100% conclusive, according to
Tullis et al. [38].

6.2. German–Latin Denomination of the Female Pelvis

Likewise, in the midwifery education context of project Heb@AR [35], a learning
game for the denominating of the female pelvis [39] was developed (see Figure 8(2)). Here,
the idea is to use TrainAR’s gamification aspects to make the traditionally dry subject of
learning all German and Latin names and their contextualization for the bones and regions
of the female pelvis more enjoyable to students. The user has to grab and combine pieces of
a puzzle with the Latin and German names with each other, and then contextualize them
to corresponding bones and regions of the female pelvis.

In terms of utility, it was found to increase the students’ intrinsic motivation to engage
with the historically dry subject significantly, which was measured through a within-subject
comparison using pre- and post-study questionnaires [39]. For usability, a SUS study score
of 84.79 (SD = 13.51) was reported (see Figure 9). This would not only be interpreted as
“Best Imaginable” Usability according to Bangor et al. [36] and surpass the non-empirical
industry benchmark of 80 [37], but is also the highest recorded SUS study score of a
TrainAR training recorded to date. The sample size of n = 36 participants should yield 100%
conclusive results, according to Tullis et al. [38].

6.3. MARLabs Titration Experiment

In the context of academic chemical engineering education, Dominguez Alfaro et al. [40]
from KU Lueven developed a TrainAR procedural training where students, preparing for their
actual physical lab titration experiments as part of the curriculum, can train the necessary
procedures of titration experiments beforehand. They can use their smartphone to combine
chemicals, follow safety procedures, and document their experiment accordingly (see Figure 8(3)).

For the usability, a SUS study score of 72.8 (SD = 14.0) [40] was reported (see Figure 9),
which would indicate above average or “Good” usability on the Adjective contextualization
scale proposed by Bangor et al. [36] and is an acceptable usability score [41]. According to
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Tullis et al. [38], this result is only between 75–80% conclusive, based on the small sample
size of n = 9 participants. The desired utility of the training was an increased understanding
of the users’ knowledge of acid–base titration concepts. Likely because of the small sample
size, the initial study failed to show statistically significant learning effects, but results
from larger studies are forthcoming [40]. Nonetheless, Dominguez Alfaro et al. [40] could
observe that the app was “well-received by the users”, and they were able to independently
download and utilize it in a remote experiment setting without an experimenter present.

6.4. Exploration of Fruit Ripeness and Sourness

Finally, for the K-12 chemistry education context, learning games for the exploration
of fruit ripeness (see Figure 8(4)) and exploration of the sourness of fruits (see Figure 8(5))
were developed for iOS tablets by Arztmann et al. [42] at Utrecht University, using TrainAR.
Dutch children aged between 11 and 15 used the application as part of their curriculum
to have playful first points of contact with chemical principles such as ripeness and sour-
ness by, for example, feeding beets with different levels of ripeness to a virtual avatar or
analyzing fruits based on their sourness, using a pH strip, and then sorting them.

The intended utility of the training was the possibility for students to independently
engage with these new concepts playfully and at their own pace. Therefore, the idea was
“triggering students’ interest in chemistry by providing a playful environment with relatable
content” [42]. While this is challenging to quantify, it was observable that the students were
able to independently utilize the game and were enjoying the experience. A non-validated
Dutch translation of the simplified SUS questionnaire by Putnam et al. was used [43] to
measure the perceived usability for this usage group. The resulting Dutch simplified SUS
questionnaire had low internal consistency, with a Cronbach’s alpha of 0.446. The calculated
SUS study score of 54.7 (SD = 15.19) (see Figure 9) would be interpreted as “OK” [36], but
below average, perceived usability and indicates only “marginally acceptable” usability
according to Bangor et al. [41]. Besides the internal reliability issues, a SUS study score
with n = 239 participants should be conclusive based on the sample size, according to
Tullis et al. [38]. With low internal reliability, children as the target group instead of adults,
and the usage of iOS tablets instead of smartphones as the delivery method, it is hard to
determine where this low perceived usability, compared to the other TrainAR trainings,
originates. It might be possible that, children, who are not the originally envisioned target
group [17], require additional considerations [42]. Additionally, interaction effects are
possible. These perceived usability results should therefore be interpreted with caution.

Figure 9. The perceived usability of the exemplary TrainAR scenarios in Figure 8 in the form of SUS
study scores, taken from primary sources evaluating TrainAR trainings [17,39,40,42] and plotted with
the SUS Analysis Toolkit [44].
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7. Usability of the TrainAR Authoring Tool

To answer research question 3, we carried out multiple steps. First, we shared the
framework with researchers from Utrecht University and KU Leuven in 2020 for them to
deploy it in their contexts; then, we iteratively used the authoring tool in two practical
lectures to observe its usage in a non-representative setting. After this indicated sufficient
maturity of the authoring tool, we conducted a systematic study to determine the tool’s
usability and to assess the required media competency.

7.1. Pre-Study and Non-Representative Observations

Initially, we shared early versions of the TrainAR framework with other Universities
in 2020 to deploy them to their contexts. During this process, the trainings described in
Section 6 were created. The TrainAR versions used by those collaborating researchers were
early builds, e.g., not including the Visual Statemachine and providing a less convenient
object-conversion utility. The researchers, while not computer scientists, had experience
with programming. While this provided valuable first insights into the feasibility of
TrainAR’s set of utility and the effectiveness, usability, and enjoyability of the authored
TrainAR trainings, these insights were not representative of the usability of the authoring
tool itself.

Afterward, early versions of the authoring tool, then already including the full TrainAR
Visual Statemachine functionality, were used during the practical part of an apprenticeship
course to obtain preliminary insights into the usage of TrainAR by the main target group
of the framework: domain experts with high levels of media competency but without
programming knowledge. In this course, eight apprentices created four TrainAR scenarios
of their choice through the course of four practical sessions, each lasting around 2 h.
Throughout this course, the apprentices chose to create scenarios for the installation of a
desktop computer set, the finishing work after 3D printing mechanical components, cutting
and filing a workpiece, and the preparation of a steak with bacon and eggs. Besides some
smaller hurdles and anticipated bugs, which could be either resolved by consulting the
teaching assistants present or through smaller technical adjustments to the source code of
the framework, the apprentices were able to create procedural action chains using TrainAR’s
authoring tool. They were even able to incorporate 3D scanning for model generation. The
observations and feedback provided showed that the authoring tool was sufficiently usable
for them. This indicates that it should also be usable for the envisioned target group and
that it is possible to independently create TrainAR trainings for them. The most challenging
aspect was the 3D model generation or gathering and the didactically conceptual, but
not technical, chaining of instructions, actions, and feedback mechanisms. Their feedback
furthermore highlighted that good documentation and especially in-depth onboarding
and “Getting Started” utility would be helpful. After improving the documentation, the
conversion utility, fixing bugs in the source code, and publishing TrainAR on GitHub, this
procedure was repeated with another course of 12 students, and then six scenarios were
created over the course of four practical sessions that were 2 h each. Here, students were
again able to successfully create trainings with the authoring tool.

7.2. Systematic Usability Study Design

After the second pre-study iteration was successful and indicated that most major
problems had been addressed, we conducted a systematic usability study, with a focus on
the pragmatic qualities of the authoring tool and the required media competency to use
the TrainAR Authoring Tool. While ideally the usability evaluation would be conducted
with actual users of the authoring tool and correlations between the pre-existing media
competency recorded through standardized tests would be investigated, this is challenging
in practice for multiple reasons. Firstly, actual users are challenging to recruit for the
study, because of resource and time constraints. Then, those users would have to be
recruited systematically and in high numbers, so there are actual differences in media
competency. Finally, systematic assessments of media competency often rely on self-
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reported measures and mostly focus on computer literacy, which would likely not be
sensitive to differences in the media competencies we are interested in. Therefore, the
study was designed as a between-subject comparison with students as participants from
three groups: Computer Science (CS) students, Media Technology (MT) students, and non-
technical students from our university. Before the experiment, we asked participants to self-
assess their competency in 3D modeling, programming, and VR/AR/Game development.
During the study, participants had to author three trainings based on provided 3D models
and stateflow descriptions in line with task process analyses, totaling 47 sub-tasks to
complete the study. The 47 sub-tasks consisted of 10 types/categories of tasks, e.g., placing
or converting an object, placing an action node in the Visual Statemachine, or placing an
instruction node. The three authoring tasks hereby increased in complexity, with the first
one (mounting a lightbulb in a socket in order to subsequently switch it on) being a simple,
linear flow of actions, the second task (a re-enactment of the East Frisian tea ceremony)
introducing quizzes and UI elements, and the third task introducing non-linear flows of
states (attachment of a needle to a syringe and subsequently filling it with medication).
During the experiment, we recorded the Task-Completion Time (TCT) and Task-Completion
Rate (TCR) for each of the 47 sub-tasks and cognitive load (NASA rTLX) [45] after each of
the three tasks. After the experiment, we measured the perceived usability using the System
Usability Scale (SUS) [46], which is one of the most widely used usability questionnaires
and provides direct benchmarking and contextualization utility [44]. Finally, we asked
the subjects for qualitative feedback to self-assess their ability to independently create AR
trainings using TrainAR.

7.3. Setup and Procedure

A desktop computer (AMD Ryzen 7 5800X, 64 GB Ram, Nvidia GeForce 3080 Ti)
with two 30-inch monitors and a stand microphone was used for the experiment. The
experimenter was sitting beside the participants during the study and took notes about
TCT and TCR, and audio was recorded during the experiment.

After greeting the participants and explaining the study, they were asked to fill out
a pre-study questionnaire. Here, they filled out a declaration of consent, a demographic
questionnaire, and a questionnaire on their relevant previous knowledge. Afterward,
they were given a brief introduction to TrainAR in the form of a 4-min explanation video.
This video explained the basic features and functionalities of TrainAR and its general use.
Furthermore, the participants were given a short verbal introduction to the documentation
of TrainAR and were encouraged to use it during the study. Then, participants used the
TrainAR Authoring Tool to implement the three pre-defined TrainAR trainings. The tasks to
create the trainings were divided into 47 sub-tasks, which were presented to the participants
sequentially in a Google Forms document. For each of the sub-tasks, the desired end result
was shown either as a short video clip or an image and their intended connection in the
flow of states as a task-process-analysis-inspired visualization. The participants then had to
author each sub-task on their own. In case they needed help, they were allowed to ask the
experimenter for hints or help. These hints and the help were given systematically on four
levels. Each of the sub-tasks had a documentation hint, meaning a pointer to the relevant
passage in the TrainAR documentation. This hint was given as a first measure, should
the participant run into problems. If this hint did not help, the participant was provided
with a solution hint, meaning a pre-defined hint for the given sub-task that was read out to
the participant. If participants were unable to solve the sub-task with this hint, they were
explicitly helped by the experimenter. This ensured that each participant was exposed to
all 47 sub-tasks during the experiment, which built upon each other. After a participant
completed all sub-tasks of this authoring task, they were asked to test the scenario on a
provided smartphone and then filled out a post-task questionnaire, containing a perceived
cognitive workload questionnaire (NASA rTLX) [45] regarding the just-completed scenario.
Before starting with the authoring of the next training, the participants were offered a short
break and snacks. After all three authoring tasks had been completed in this fashion, the
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participants were finally asked to fill out the post-study questionnaires, containing the SUS,
as well as a qualitative feedback questionnaire asking them what they liked, where they
had problems, and to assess if they would be able to create an AR training independently.

7.4. Participants

Overall, 30 participants took part in the experiment. Twenty-one of the participants
were male, and nine were female. The average age of the participants was 25.13 (SD = 3.24).
Participants received monetary compensation for their participation in this study.

The participants were recruited from groups: 10 participants were Computer Science
(CS) students, 10 were Media Technology (MT) students, and the remaining 10 students
were from various non-technical study programs (i.e., business administration and social
work studies) from our university. To validate if their self-reported competency matched
our expectation of the groups, participants were asked to rate their experience in 3D model-
ing, programming, and VR/AR/game development on a seven-point Likert scale ranging
from 1 (“no experience at all”) to 7 (“very experienced”). CS students reported the highest
experience in both programming (M = 5.40, SD = 1.11) and VR/AR/game development
(M = 3.60, SD = 2.01), indicating they were experienced in programming and somewhat
experienced in VR/AR/game development. MT students reported that they were some-
what experienced in programming (M = 3.00, SD = 1.18) and not at all experienced in
VR/AR/game development (M = 1.6, SD = 0.92). Non-technical students reported no expe-
rience at all in programming (M = 1.10, SD = 0.30) or VR/AR/game development (M = 1.00,
SD = 0.00). MT students reported the highest experience with 3D modeling (M = 4.00,
SD = 1.00), followed by CS students (M = 3.10, SD = 1.45). Non-technical students again
reported no experience at all with 3D modeling (M = 1.10, SD = 0.30).

7.5. Results

We recorded the objective measures of TCT, TCR, perceived cognitive load (NASA
rTLX) [45], and perceived usability (SUS) [46]. As this study is exploratory in nature, the
objective measures of TCT and TCR are descriptively reported on the task level to show
trends in the data, but inferentially analyzed and reported at sub-task level across the three
tasks to have sufficient power for the statistical tests. The perceived cognitive load is also
descriptively reported on the authoring-task level, but the average cognitive load across
the experiment is analyzed using inferential statistics.

7.5.1. Task Completion Times

In terms of the Task-Completion Times (see Figure 10) of the first authoring task, CS
students achieved the fastest average TCT of 3.11 min (SD = 3.39 min), followed by MT
students with a TCT of 3.67 min (SD = 4.24 min). With a TCT of 4.86 min (SD = 3.84 min),
non-technical students were on average the slowest during the first authoring task.

For the second authoring task, MT students achieved an average TCT of 1.33 min
(SD = 1.01 min), closely followed by CS students with 1.47 min (SD = 1.03 min). Non-
technical students on average needed 1.66 min (SD = 1.08 min) to complete the second
authoring task. For the third authoring task, MT students were the fastest, where they
on average needed 2.15 min (SD = 3.10 min) per sub-task. CS students achieved an
average TCT of 2.21 min (SD = 2.74 min) and non-technical students an average of 2.6 min
(SD = 3.45 min).

Not shown in Figure 10 are six outliers. Three outliers in the first authoring task are
the first occurrences of the sub-task of the “action” category (see Figure 11): CS students on
average needed 13.45 min, MT students 16.6 min, and non-technical students 15.8 min to
solve this sub-task. The other three outliers not visible are part of the third authoring task
and are the first occurrences of the sub-task category “fork-action”. Here, CS students on
average needed 9.80 min, MT students 11.96 min, and non-technical students 12.32 min to
solve this sub-task.
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Figure 11 shows the average task completion times for the occurrences of the sub-tasks
in each sub-task-category, including the outliers. Notably, TCTs for all sub-tasks decreased
not only consistently, but also to a similar degree in each of the student groups when
occurring repeatedly.

Figure 10. Average Task Completion Time (TCT) of each of the student groups (Computer Science,
Media-Technology, and non-technical students) for each of the three authoring tasks the participants
authored during the study.

Figure 11. The average Task Completion Time (TCT) after each occurrence of one of the ten sub-
task types for each of the student groups (Computer Science, Media-Technology, and non-technical
students).

As the assumption of normality (Shapiro–Wilk test) was satisfied and Levene’s test
considered the populations’ variance to be equal (p = 0.646), we conducted an ANOVA to
check for differences of the average TCT across all 47 sub-tasks between the groups. The
one-way ANOVA revealed no statistically significant differences in average TCT between
CS students, MT students, or non-technical students (F(2,27) = 2.79, p = 0.079).

7.5.2. Task Completion Rates

Table 2 shows the average Task-Completion Rate (TCR) of the 47 sub-tasks across
the three authoring tasks (11 for authoring task 1, 21 for 2, and 15 for 3) depending on
the participant’s group. Here, the reported TCR is split into four levels. On the first level,
“no help”, participants completed the task without any help or hints. On the second level,
“documentation hint”, participants were given a hint of where in the documentation the
solution for their current task could be found. “Solution hint” was an explicit, predefined
hint on how to solve the sub-task, which was shown to the participants when they were still
not able to solve the task with the documentation hint. If this hint was also not sufficient,
participants were helped by the experimenter to complete the sub-task (“explicit help”).
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While we do not have statistical power or sample size to deploy a two-way mixed-
design analysis-of-variance model, there are some interesting descriptive trends that are
apparent. For example, in the first authoring task, while in the CS and MT group, partici-
pants on average were able to complete over 80% of the sub-tasks without any help, this
was only true for 64% of non-technical students. With an average percentage of completed
sub-tasks without any help of 96% for the CS group, 98% for the MT group, and 92% for
the non-technical students, this gap was narrowed with familiarity with the sub-tasks in
the second authoring task. This is until non-linear action chains were introduced into
the third authoring task, where the CS group and MT group both retained an average
completion percentage of sub-tasks without help of above 90%, while the non-technical
group reported the highest average percentage of sub-tasks only completed with explicit
help by the experimenter (10%). This was mainly caused by the non-linear “Fork Actions”,
which the non-technical students struggled with. Here, the majority of them needed explicit
help from the experimenter when it first occurred, while only one participant for the CS and
MT students needed explicit help. Also notable is the fact that for the CS and MT students,
the documentation hint was often sufficient (see the docu hint percentage >= solution hint
percentage in Table 2), while for the non-technical student’s solution hints were required
more often (see the solution hint percentage > docu hint percentage in Table 2)

Table 2. The average Task Completion Rate (TCR) for each of the three authoring tasks, grouped by
the participants’ study program and reported on 4 levels: without any help, with a hint of where in
the documentation the solution is described, with a predefined solution hint, or with explicit help.

Help/Hint Computer Science Media Technology Non-Technical

Authoring Task 1

No Help 81.90% (SD = 23.00) 80.00% (SD = 18.00) 64.00% (SD = 26.00)
Docu Hint 9.90% (SD = 12.00) 11.00% (SD = 13.00) 12.00% (SD = 10.00)
Solution Hint 4.50% (SD = 8.70) 3.60% (SD = 4.60) 16.00% (SD = 15.00)
Explicit Help 3.60% (SD = 8.70) 5.40% (SD = 4.60) 8.10% (SD = 6.60)

Authoring Task 2

No Help 96.00% (SD = 7.80) 98.00% (SD = 0.00) 92.00% (SD = 9.00)
Docu Hint 1.50% (SD = 3.40) 1.00% (SD = 3.20) 1.00% (SD = 3.20)
Solution Hint 0.50% (SD = 1.60) 1.00% (SD = 3.20) 6.70% (SD = 5.90)
Explicit Help 1.90% (SD = 6.00) 0.00% (SD = 0.00) 0.50% (SD = 1.60)

Authoring Task 3

No Help 93.00% (SD = 9.70) 91.00% (SD = 9.50) 82.00% (SD = 10.00)
Docu Hint 2.00% (SD = 4.40) 3.40% (SD = 4.70) 1.40% (SD = 3.00)
Solution Hint 2.70% (SD = 4.60) 2.70% (SD = 4.60) 6.80% (SD = 6.30)
Explicit Help 2.70% (SD = 8.50) 2.70% (SD = 6.50) 10.00% (SD = 9.60)

Combining the task completion rates of all 47 sub-tasks and interpreting them as ranks
ranging from one (completed without help) to four (explicit help of the experimenter), we
can check for differences between groups with a non-parametric test. Therefore, a Kruskal–
Wallis H test was used. It indicated a significant difference in the TCR between the groups,
χ2(2) = 7.63, p = 0.022, with a mean rank score of 10.85 for CS students, 14.2 for MT students,
and 21.45 for non-technical students. Dunn’s posthoc test using a Bonferroni corrected
alpha of 0.017 indicated that the mean rank of CS students and non-technical students was
significantly different (p = 0.007). The differences between CS students and MT students
(p = 0.39) and MT and non-technical students (p = 0.065) were not significantly different.
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7.5.3. Perceived Cognitive Load

To measure the perceived cognitive workload of the participants, the non-weighted
version of the NASA TLX questionnaire [45] (NASA rTLX) was used. Participants had to
answer the questionnaire items on a 7-point Likert scale. The results were then normalized
towards a 1–100 score. This is not the standard application method to evaluate the NASA
rTLX but is commonly used this way in the literature to achieve scale consistency while
already utilizing Likert scales [47,48]. Figure 12 shows the measured scores for each of the
three tasks and participant groups. For the first authoring task, CS students reported the
lowest perceived cognitive load with an average score of 31.67 (SD = 12.56), followed by
MT students (M = 37.22, SD = 11.12), while non-technical students rated their perceived
cognitive load the highest (M = 45.83, SD = 3.45). For authoring task two, CS students
reported an average NASA rTLX score of 22.50 (SD = 6.51), MT students reported an
average of 33.89 (SD = 10.67), and non-technical students an average of 34.44 (SD = 12.12).
This trend continued for the final authoring task, where CS students again rated their
perceived cognitive load the lowest (M = 29.77, SD = 12.30), followed by MT students
(M = 35.56, SD = 7.11). Again, non-technical students rated their perceived cognitive load
the highest (M = 42.24, SD = 16.89).

Figure 12. Average perceived cognitive load measures with the NASA rTLX [45] for each authoring
task grouped by participants’ study program, normalized to a 1–100 score.

As the assumption of normality was satisfied (Shapiro–Wilk test) and Leven’s test
considered the population’s variance to be equal (p = 0.39), a one-way ANOVA was
used on the average NASA rTLX score of all three measurement points after each au-
thoring task. It revealed statistically significant differences between at least two groups
(F(2, 27) = 3.3924, p = 0.0485). Tukey’s HSD test for multiple comparisons indicated that CS
students perceived significantly lower average cognitive load throughout the authoring
process compared to non-technical students (p = 0.0392, C.I. [0.5534, 25.18]). No statisti-
cally significant differences were found between the MT and CS (p = 0.29) and MT and
non-technical students (p = 0.55).

7.5.4. Perceived Usability

Analyzing the perceived usability, reported through the SUS questionnaire after com-
pleting all three authoring tasks, using the SUS Analysis Toolkit [44], CS students reported a
SUS study score of 85.75 (SD = 9.88). This would be considered “Best Imaginable” usability
according to Bangor et al. [36] and is above the non-empirical, but commonly used, industry
benchmark of SUS study scores of 80 [37]. MT students reported a SUS study score of
79.25 (SD = 9.36), which would be considered “Good” usability [36]. The non-technical
students reported a SUS study score of 60.25 (SD = 15.14). This would be considered a
below-average, “OK” usability according to Bangor et al. [36] but would still be marginally
acceptable usability [41]. A sample size of n = 10 for each of the groups should be 80%
conclusive, according to Tullis et al. [38]. The results of the SUS are visualized in Figure 13.
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Figure 13. The perceived usability of the TrainAR authoring tool reported as SUS scores, grouped by
the study program of the participants, plotted with the SUS Analysis Toolkit [44].

The assumption of normality was satisfied (Shapiro–Wilk test) and Levene’s test
considered the population’s variance to be equal (p = 0.293). Therefore, a one-way ANOVA
was conducted to compare the effect of the three groups on the perceived usability, reported
through SUS scores. The one-way ANOVA revealed that there was a statistically significant
difference in SUS scores between at least two groups (F(2, 27) = 11.439, p = 0.00025). Tukey’s
HSD test for multiple comparisons indicated that CS students reported significantly higher
SUS scores compared to non-technical students (p = 0.00025, 95% C.I. = [11.7624, 39.24]), and
MT students reported significantly higher SUS scores compared to non-technical students
(p = 0.00538, 95% C.I. = [5.2624, 32.7376]). No statistically significant differences in SUS
scores were found between CS students and MT students (p = 0.479).

7.5.5. Qualitative Feedback

To gather qualitative feedback for TrainAR, participants were asked what they liked
and disliked while working with the authoring tool. When prompted to answer what
the participants liked about TrainAR, eleven participants mentioned working with the
visual scripting nodes and how these made it possible to implement complex training
sequences without requiring any programming knowledge. Positively highlighted in
particular was the visual representation of the processing logic. This was described as
“intuitively understandable” and “clear”. They stated that, once the basic concept was
understood, it was “absolutely no problem applying them to the various tasks”. Further,
highlighted positively was the easy deployment process of a training to the handheld
device. This made it possible to quickly identify and fix bugs.

When asked what the participants disliked about using TrainAR, three mentioned
referencing the TrainAR Objects in the script nodes by their name. This was described
as tedious and error-prone, because of typos, and participants wished that this could be
performed by “drag and drop”. Another three participants mentioned problems while
moving objects in the 3D environment of the authoring tool (note: this was caused by a bug,
where objects when dragged and dropped into the scene would sometimes not be placed at
the correct height of the reference setup). Furthermore, the conversion process for TrainAR
Objects was described as tedious by four of the participants, especially when multiple
objects were involved, since the conversion had to be performed one-by-one and could not
be performed in batches. Lastly, three participants from the MT and non-technical group
mentioned that they may need help from a “technical person” to use TrainAR to its fullest
potential.

When asked if they had any further remarks about TrainAR or the study, five partici-
pants from the MT and non-technical groups mentioned they had fun while using TrainAR.
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Three participants in the CS and MT group answered they thought TrainAR is versatile in
use and could see its potential. Two CS students stated that it provides an interesting first
insight into AR development.

7.5.6. Self-Assessment: Independently Creating a TrainAR Training

Finally, we asked participants how much they would agree with the statement “I think
I would be able to create AR trainings on my own using TrainAR” on a seven-point Likert
scale. Both the CS students (M = 6, SD = 1.15) and the MT students (M = 5.8, SD = 1.03)
agreed with the statement, while the non-technical students somewhat agreed (M = 4.8,
SD = 1.87) with it. As the sample size was small for Likert-scale data, and the normality
assumption was violated, a Kruskal–Wallis H test was performed, which indicated that
there was a non-significant difference in the dependent variable between the three groups,
χ2(2) = 2.64, p = 0.267, with a mean rank score of 18.05 for CS students, 16.4 for MT students,
12.05 for the non-technical students. The effect size was small (η2 = 0.024).

When asked to provide the reasoning behind their self-assessment, seven participants
(all either MT or CS students) stated working with TrainAR, after a short familiarization
phase, is easy to understand and use. Positively highlighted here were the visual state
machine nodes, which were described as “intuitive” and “explained in an understandable
way”. Furthermore, three participants mentioned that the documentation was an enor-
mous help in understanding what each element of TrainAR, especially the state machine
nodes, does and made it possible to get them started quickly. Three participants, however,
mentioned that they would not know how to acquire the 3D models necessary for creating
trainings when they are not provided as they were during the study. One of the participants
described the reasoning behind their self-assessment as “still too many questions” and
another stated that they would need help from an expert to guide them if they had to create
a training with TrainAR.

8. Discussion

The authoring tool of the TrainAR framework allows domain experts to create their
own procedural AR trainings by utilizing the evaluated TrainAR interaction concept, in-
cluding its onboarding and technical utility, allowing authors to focus on the content of
the training, and not having to worry about the technical aspects or AR-specific implemen-
tation challenges. Authors, if they choose to do so, can follow our didactic consideration
framework but can also implement their own didactic ideas. With TrainAR being com-
pletely free, published as open-source under the MIT license, being fully documented,
and using handheld AR devices as the target hardware, the created procedural AR train-
ings are realistically scalable today. This enables bring-your-own-device methodologies,
self-directed learning, location-independent learning, and self-paced preparation or reten-
tion opportunities through interactive AR trainings, which are engaging and incorporate
psychomotor learning components [39]. This pragmatic and, more importantly, holistic
approach to the authoring of interactive AR trainings is novel in the literature and should
not only help the efficiency of the authoring process but also provide guidance for the
created trainings to follow proven principles. We think that this will also help to resolve
the causality dilemma of not knowing what an AR training could look like, before even
starting to author them, but also not being able to develop an AR training before having an
extensive process description of the training.

As discussed in Section 4.1, we deliberately chose to implement the TrainAR authoring
tool as a Unity extension and developed the TrainAR Statemachine and UI layout options
to be extendable and replaceable. Ultimately, programmers can utilize the full Unity
functionality seamlessly with the framework. Where the TrainAR scope and documentation
ends, there are a good number of documentation, tutorials, and getting-started utilities
on how to use the Unity engine. In this context, TrainAR should enable and accelerate
development, but never be a limiting factor. While the authoring tool does not require
programming skills and is designed as a low-level content-design framework, we are aware
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of the inherent trade-off of this introducing interface complexity, compared to standalone
authoring tool approaches but believe that this trade-off is merited.

This pragmatic, open perspective continues in the didactic consideration aspects of
the framework. From our first explorations into different contexts and the work of the
partners on their TrainAR trainings, we expect the utility (see Figure 7) and therefore
inherently also the didactic perspective on the utilization of the TrainAR trainings to differ
significantly based on the context-specific needs. Therefore, while we provide didactic
considerations [17], they are more of a “didactic cookbook” for authors to use according to
their own tastes than strict rules we envision for the framework to follow.

In its current stage, the gathering or generation of 3D assets to use in the training
likely remains the biggest technical challenge. Additionally, this aspect was also excluded
during our usability evaluation of the authoring tool. For one, there are multiple ways to
obtain assets, ranging from online asset stores, over free online databases, to 3D scanning,
making it challenging to actually evaluate this aspect systematically. However, more
importantly, we believe that the asset generation will be increasingly simplified with
technological advancements, as already today, modern smartphones can create acceptable
3D assets through LiDAR scanning, and zero-shot 3D asset generation through AI (Artificial
Intelligence) is showing promising recent scientific results [33]. We believe that, eventually,
the 3D asset generation, and therefore the TrainAR Object aspect, will become decreasingly
challenging, and we therefore explicitly designed it with this development in mind.

8.1. Evaluations of TrainAR Trainings

As the current and forthcoming results of the utility and usability of TrainAR trainings
look promising, this is at least a first indication that the TrainAR framework is providing
the necessary utility to create TrainAR trainings that elicit the desired learning outcomes,
are usable, and enjoyable. Though this is promising, and distinctive application contexts
were chosen deliberately, the generalizability of these results has to be confirmed through
the application of the framework to novel contexts. Notably, while the feedback of other
researchers, utilizing TrainAR for more than two years at the time of publishing this paper,
indicates that the provided utility is largely sufficient, some implementations of TrainAR
already required context-specific extensions, such as logbooks and interactive chemical
graphs in the MARLab training application [40]. Moreover, while we were able to achieve
consistently high perceived usability, this can only provide the upper limit and show that
it is possible to create usable trainings but does not guarantee that usage of the TrainAR
authoring tool will inherently lead to trainings with good usability.

The fact that the TrainAR authoring tool can be used effectively to create procedural
and interactive handheld AR trainings is shown through our use and the use of partner
universities that utilized TrainAR to create interactive procedural trainings and learning
games for smartphones and tablets. These trainings span across a wide range of topics,
targeted media competencies, and ages, with consistent observations, especially in terms
of the enjoyability of the trainings, which previous work identified as the most important
factor for usage intention [5].

8.2. Evaluation of the TrainAR Authoring Tool

The systematic usability evaluation of the TrainAR authoring tool revealed several
interesting insights. While there were trends in the TCTs across all sub-tasks but also on the
task level, no statistically significant differences were found. When categorizing the sub-
task by the task category, a clear trend can be observed, where sub-tasks that occur multiple
times are subsequently completed faster. This decline in subsequent TCT is especially steep
after the first occurrence of a sub-task category, and is seemingly quite consistent across the
groups (see Figure 11). This might be an indication that people can learn the handling of
the authoring tool quickly, and there is only an initial hurdle to conceptual understanding.
Interesting here are also the two outliers of the first occurrence of the action node and the
first occurrence of the fork-action node, which require by far the most time to complete
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when they are introduced, but this decreases sharply. While we expected as much and
already provided getting-started guides, we interpret this as a call for even more in-depth
onboarding materials that provide the author with assistance on this initial hurdle, e.g., in
more digestible formats such as video tutorials or practical course materials.

We tried to increase the difficulties of each of the three authoring tasks by first using a
linear task of actions in the first, introducing quizzes and custom actions into the second,
and then introducing non-linear flows in the third task. The TCT by task indicates that
the complexity increment of quizzes was not nearly as challenging as the introduction
of non-linear flows, as there is a decline in TCT between the first and second authoring
task, but then, while the median stays consistent, a noticeable increase in the average and
standard deviation of the TCT for the third authoring task, as can be seen in Figure 10. This
was caused by fork actions. Looking at these and contextualizing them with the TCR, this
was clearly caused by the introduction of non-linear flows across the groups.

Generally, significant differences were found for the TCR between the groups. Here,
CS students performed significantly better than non-technical students, and the difference
between MT and non-technical students was approaching significance (p = 0.065). An
increase in TCR from the first to the second authoring task is consistent with the TCT and
across the groups. Notably, non-technical students had very noticeable problems as soon as
the non-linear fork-actions were introduced, which, in contrast to TCT, was not as apparent
in the other groups. This is likely due to familiarity with programming and node-based
systems in asset-creation pipelines that the MT and CS groups brought with them, and
should be considered for the documentation and onboarding material.

This trend continued for the perceived cognitive load, where CS students reported
significantly lower scores than the non-technical students, but no other differences were
found. Again, in line with TCT and TCR, within the group, the perceived cognitive load
first decreased after the second task but then for all groups increased with the introduction
of the fork-actions again.

Most importantly, the perceived usability reported through the SUS was the self-
reported measure of usability in our experiment. Here, significant differences were found
between CS and non-technical and MT and non-technical students, but not between the
CS and MT groups. As this is in line with the objective measures of TCT and TCR and
somewhat in line with the perceived cognitive load, we believe this supports the hypoth-
esis that the tool is usable by media technologists and domain experts with high media
competency in its current state. The results indicate that domain experts with lower levels
of media competency might struggle with the current state of the authoring tool, with the
most difficult challenges being asset acquisition and non-linear stateflows. Nonetheless, it
might be possible to lower the entrance barrier through documentation and getting-started
guides, e.g., in more approachable formats such as videos or practical course material.
Additionally, when asked for their self-assessment if they think they were able to create
a TrainAR training, even the non-technical students somewhat agreed, which did not
significantly differ from the other groups, which agreed.

While we think these results are promising, they are limited in several ways. For one,
recruiting students from three groups with implied differences is not the ideal experimental
setup, as stated in Section 7.2, but was chosen for practical reasons. Notably, at least the
self-reported measures were in line with the group expectations. Additionally, the sample
size was small, and we were aware that the prospective statistical power would be low,
but larger sample sizes were not realistic, as the study took roughly two to three hours
to conduct per participant and one-on-one study support was needed. Nonetheless, our
results, and the trends that can be shown descriptively and through the qualitative feedback,
are in line with our expectations. Importantly, they are also in line with the observations
we made when sharing TrainAR with other researchers over the last two years, and using
the authoring tool iteratively in several practical tutorial sessions at our university. We
are therefore satisfied with these results and will address the observations in subsequent
documentation and course material and move on to the next evaluation stage.
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8.3. In-The-Wild Testing Approach & Ongoing Evaluations

Realistically, there is no lab-study or prototypical evaluation that can fully answer our
questions. Gathering requirements before having an initial implementation of TrainAR
trainings and an authoring tool to create them still faces the causality dilemma of the
missing shared understanding of what procedural task trainings would even look like
for Handheld AR, as discussed in Section 3. Additionally, it is challenging to distinguish
general needs for the framework from context-specific needs. We are cautiously optimistic
about the provided set of utility, based on our non-representative observations in our
contexts, the feedback by other researchers, and the systematic usability evaluation of
the authoring tool. Still, generalizable insights will only be gathered after open-source
publication of the authoring tool and its application by independent parties.

With this publication of the entire TrainAR framework, the evaluation results, and
open sourcing of the authoring tool, we are therefore starting an evaluation period in line
with the field usability testing methodology [49], and other researchers and educators
are encouraged to deploy the tool and provide feedback (e.g., through email or GitHub
Issues) from their real usage experience for additional refinements or future directions
of TrainAR. Additionally, we will use the TrainAR framework and apply it holistically in
our next evaluation iteration. Here, we will let teachers author TrainAR trainings with
the tool and not only evaluate the authoring process itself but also then let them use the
created trainings in a classroom setting as a multimedia learning intervention, where we
will then gather feedback on the utility and usability of the training created by them, not us.
Furthermore, we will continue to deploy the authoring tool into the practical parts of an
apprenticeship course again. This will allow us to iteratively evaluate further and improve
the usability of the authoring tool, while providing first insights into AR development for
the students.

9. Conclusions

In this paper, TrainAR’s framework components were discussed from a technical
perspective, and a visual scripting-based authoring tool was proposed for the TrainAR
framework: The TrainAR authoring tool. The authoring tool has been published as an
open-source project (https://github.com/jblattgerste/TrainAR, accessed: 31 March 2023),
containing the full source code for the TrainAR interaction concept and authoring func-
tionality as a Unity extension under the MIT license. In addition to a full documentation
(https://jblattgerste.github.io/TrainAR/, accessed: 31 March 2023), which is included with
the authoring tool, getting-started guides, and tutorials are available and several TrainAR
scenarios are already developed, evaluated, and documented in reference videos. They
showed good usability, were enjoyable by the trainees, and showed utility results such
as increased motivation. A systematic usability evaluation of the TrainAR authoring tool
revealed that, while all groups were able to use the authoring tool and improved over time
during the study, the likely target group of the authoring tool is media technologists or
domain experts with high media competency. This is mainly due to concepts such as the
formalization of non-linear flows of states, which are hard to grasp for people with lower
levels of media competency, and the need to acquire appropriate 3D assets. Nonetheless,
programming or expertise in software engineering does not seem to be required to uti-
lize the authoring tool, and we believe that our current results suggest that the TrainAR
authoring tool is a useful contribution to the current state of the AR authoring landscape.

Current & Future Work

Besides our efforts to continuously evaluate and iteratively improve the state of the
authoring tool’s source code for the current scope of the TrainAR framework as stated in
Section 8.3, we also plan to expand TrainARs ideas and perspectives in several directions
and hope for future cooperations and third-party contributions to our open-source project.

One important technical aspect we are trying to address currently is training distribu-
tion aspects. Here, we are exploring if we could improve the deployment and distribution

https://github.com/jblattgerste/TrainAR
https://jblattgerste.github.io/TrainAR/
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aspect of authored TrainAR trainings for users during the development phase and for-
mative testing and the actual deployment afterward, as currently, when authors create
trainings, they would have to either manually distribute the training as compiled apps for
Android or iOS or would have to publish them into an asset store, which, in our experience,
is a daunting endeavor.

Furthermore, we are currently working on a higher-level onboarding utility for the
TrainAR Authoring Tool. While the extensive documentation already includes getting-
started guides and examples to utilize, we are currently working on video material in the
“tutorial” format, which are more specifically targeted at potential users that are neither
programmers nor media technologists, in the hopes to lower the barrier of entrance without
limiting the expandability of TrainARs authoring tool.

Additionally, we plan to work on a didactic white paper that specifies more clearly
what we believe specific components of the framework can achieve and how we envision
them to be used (e.g., feedback nodes, insights, instructions, or quiz elements). While
this is discussed in detail in our paper on the didactic framework [17] and summarized in
the technical documentation, we want to make this information more approachable and
provide it in formats in line with domain experts’ expectations.

We are also interested in expanding TrainAR towards incorporating physical object
and marker tracking, to not only use virtual objects but also integrate physical objects
into the flow during the training. While this was explored during development and is
not particularly challenging from a technical perspective, as tracking libraries for this
already exist, considerations must be made for the didactic concept and how to integrate
the physical material seamlessly into the framework, as this might impact not only the
usability but also the current strengths of TrainARs’ ideas of location-independent learning,
material/cost-savings, and immediate scalability of authored AR trainings [17].

Finally, while interaction concepts that can be used for procedural trainings such as
the MRTK exist for AR HMDs, we would like to explore if expanding TrainAR towards
including HMDs as a target platform would be feasible and viable, as not only the visual
representation of the stateflow but also some didactic considerations and modules could
significantly add to the state of AR authoring tools in the HMD-based training context.
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Abbreviations
The following abbreviations are used in this manuscript:

AR Augmented Reality
VR Virtual Reality
MR Mixed Reality
HMD Head-mounted Device
UI User Interface
SUS System Usability Scale
TCT Task Completion Time
TCR Task Completion Rate
CS Computer Science
MT Media Technology
MRTK Mixed Reality Toolkit
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